656 research outputs found

    Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks

    Full text link
    Spectrum sensing, which aims at detecting spectrum holes, is the precondition for the implementation of cognitive radio (CR). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage. Due to hardware limitations, each cognitive radio node can only sense a relatively narrow band of radio spectrum. Consequently, the available channel sensing information is far from being sufficient for precisely recognizing the wide range of unoccupied channels. Aiming at breaking this bottleneck, we propose to apply matrix completion and joint sparsity recovery to reduce sensing and transmitting requirements and improve sensing results. Specifically, equipped with a frequency selective filter, each cognitive radio node senses linear combinations of multiple channel information and reports them to the fusion center, where occupied channels are then decoded from the reports by using novel matrix completion and joint sparsity recovery algorithms. As a result, the number of reports sent from the CRs to the fusion center is significantly reduced. We propose two decoding approaches, one based on matrix completion and the other based on joint sparsity recovery, both of which allow exact recovery from incomplete reports. The numerical results validate the effectiveness and robustness of our approaches. In particular, in small-scale networks, the matrix completion approach achieves exact channel detection with a number of samples no more than 50% of the number of channels in the network, while joint sparsity recovery achieves similar performance in large-scale networks.Comment: 12 pages, 11 figure

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    In-network Sparsity-regularized Rank Minimization: Algorithms and Applications

    Full text link
    Given a limited number of entries from the superposition of a low-rank matrix plus the product of a known fat compression matrix times a sparse matrix, recovery of the low-rank and sparse components is a fundamental task subsuming compressed sensing, matrix completion, and principal components pursuit. This paper develops algorithms for distributed sparsity-regularized rank minimization over networks, when the nuclear- and 1\ell_1-norm are used as surrogates to the rank and nonzero entry counts of the sought matrices, respectively. While nuclear-norm minimization has well-documented merits when centralized processing is viable, non-separability of the singular-value sum challenges its distributed minimization. To overcome this limitation, an alternative characterization of the nuclear norm is adopted which leads to a separable, yet non-convex cost minimized via the alternating-direction method of multipliers. The novel distributed iterations entail reduced-complexity per-node tasks, and affordable message passing among single-hop neighbors. Interestingly, upon convergence the distributed (non-convex) estimator provably attains the global optimum of its centralized counterpart, regardless of initialization. Several application domains are outlined to highlight the generality and impact of the proposed framework. These include unveiling traffic anomalies in backbone networks, predicting networkwide path latencies, and mapping the RF ambiance using wireless cognitive radios. Simulations with synthetic and real network data corroborate the convergence of the novel distributed algorithm, and its centralized performance guarantees.Comment: 30 pages, submitted for publication on the IEEE Trans. Signal Proces
    corecore