187 research outputs found

    2.4. An ASV (Autonomous Surface Vehicle) for Archaeology: The Pladypos at Caesarea Maritima, Israel

    Get PDF
    With the advent of new digital site recording technologies, archaeologists must manage spatial and visual datasets that have grown far beyond the capacity of last century’s paper notebooks. Turning to purely digital recording systems (“going paperless”) in underwater archaeology presents a different set of challenges from terrestrial archaeology and requires a specialized toolkit. The Pladypos prototype, an autonomous surface vehicle, responds to the need for underwater archaeological site mapping tools to be simple, robust, highly portable, and—where appropriate—to coordinate its operations effectively with human divers and tablet-based digital recording systems. Over several days in 2014, the Pladypos was deployed to map the Herodian port structures at Caesarea Maritima, Israel, one of the Mediterranean’s most important submerged coastal sites. In 2015, this mission was expanded to support the excavation of the site of a possible 11th-century a.d. Fatimid shipwreck found near the southern breakwater of Caesarea’s outer harbor.https://dc.uwm.edu/arthist_mobilizingthepast/1012/thumbnail.jp

    Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

    Get PDF

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions
    • …
    corecore