44 research outputs found

    Collaborative analysis of multi-gigapixel imaging data using Cytomine

    Get PDF
    Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications

    An approach for detection of glomeruli in multisite digital pathology

    Full text link
    peer reviewedWe present a novel bioimage informatics workflow that combines Icy and Cytomine software and their algorithms to enable large-scale analysis of digital slides from multiple sites. In particular, we apply this workflow on renal biopsies and evaluate empirically our approach for the automatic detection of glomeruli in hundreds of tissue sections

    Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach

    Get PDF
    The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research

    Nucleus segmentation : towards automated solutions

    Get PDF
    Single nucleus segmentation is a frequent challenge of microscopy image processing, since it is the first step of many quantitative data analysis pipelines. The quality of tracking single cells, extracting features or classifying cellular phenotypes strongly depends on segmentation accuracy. Worldwide competitions have been held, aiming to improve segmentation, and recent years have definitely brought significant improvements: large annotated datasets are now freely available, several 2D segmentation strategies have been extended to 3D, and deep learning approaches have increased accuracy. However, even today, no generally accepted solution and benchmarking platform exist. We review the most recent single-cell segmentation tools, and provide an interactive method browser to select the most appropriate solution.Peer reviewe

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    EXACT: a collaboration toolset for algorithm-aided annotation of images with annotation version control

    Get PDF
    In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering

    Computational Analysis of Tumour Microenvironment in mIHC Stained Diffuse Glioma Samples

    Get PDF
    Healthcare is a sector that has been notoriously stagnant in digital innovation, nevertheless its transformation is imminent. Digital pathology is a field that is being accentuated in light of recent technological development. With capacity to conduct high-resolution tissue imaging and managing output digitally, advanced image analysis and Machine Learning can be subsequently applied. These methods provide means to for instance automating segmentation of region-of-interests, diagnosis and knowledge discovery. Brain malignancies are particularly dire with a high fatality rate and relatively high occurrence in children. Diffuse gliomas are a subtype of brain tumours whose biological behavior range from very indolent to extremely aggressive, which is reflected in grading I - IV. The brain tumour micro-environment (TME) --- local area surrounding cancerous cells with a plethora of immune cells and other structures in interaction --- has emerged as a critical regulator of brain tumour progression. Researchers are interested in immunotherapeutic treatment of brain cancer, since modern approaches are insufficient in treatment of especially the most aggressive tumours. Additionally, the TME is rendered difficult to understand. Multiplex Immunohistochemistry (mIHC) is a novel approach in effectively mapping spatial distribution of cell types in tissue samples using multiple antibodies. In this thesis, we investigate the TME in diffuse glioma mIHC samples for three patient cases with 2-3 differing tumour grades per patient. From the 18 possibilities we selected 6 antigens (markers) of interest for further analysis. In particular, we are interested in how relative proportion of positive antigens and mean distance to nearest blood vessel vary for our selected markers in tumour progression. In order to acquire desired properties, we register each corresponding image, detect nuclei, segment cells and extract structured data from region channel intensities along with their location and distance to nearest blood vessel. Our primary finding is that M2-macrophage and T cell occurrence proportions as well as their mean distance to blood vessel grow with increasing tumour grade. The results could suggest that aforementioned cell types are of low quantity in near vicinity of blood vessels in low tumour grades, and conversely with higher quantities and more homogeneous distribution in aggressive tumours. Despite the several potential error sources and non-standardized processes in the pipeline between tissue extraction and image analysis, our results support pre-existing knowledge in that M2-macrophage proportion has a positive correlation with tumour grade.Terveydenhuollon digitaalinen kehitys on ollut hidasliikkeistä muihin sektoreihin verrattuna. Tästä huolimatta, terveydenhuollon digitaalinen muunnos on välitön ja asiaan liittyvä tutkimus jatkuvaa. Digitaalinen patologia on ala, joka viime aikaisen teknologisen kehityksen myötä on korostunut. Kudoskuvantaminen korkealla resoluutiolla ja näytteiden digitaalinen hallinta on mahdollistanut kehittyneen kuvanalysiin sekä koneoppimisen soveltamisen. Nämä metodit luovat keinot esimerkiksi biologisesti merkittävien alueiden segmentointiin, diagnoosiin ja uuden tieteellisen tiedon tuottamiseen. Aivokasvaimet ovat järkyttäviä, sillä tapauskuolleisuus ja esiintymä nuorissa ovat suhteellisen korkealla. Diffuusigliomat ovat aivokasvainten alatyyppi, jonka sisältämät kasvaimet luokitellaan niiden aggressiivisuuden perusteella eri graduksiin väliltä I - IV. Kasvaimen mikroympäristö (TME), eli syöpäsolujen paikallinen ympäristö sisältäen mm. runsaasti immuunipuolustuksen soluja vuorovaikutuksessa, on osoittautunut merkittäväksi tekijäksi kasvaimen kehityksen suhteen. Aivosyövän tutkimus painottuu immunoterapeuttisiin ratkaisuihin, sillä nykyiset hoitomuodot eivät ole tarpeeksi tehokkaita etenkään kaikista aggressiivisimpien kasvainten hoidossa. Lisäksi mikroympäristö voi olla vaikea ymmärtää. Monikanavainen immunohistokemiallinen värjäys (mIHC) on uudenlainen lähestymistapa solutyyppien spatiaalijakauman kartoittamiseen kudosnäytteissä tehokkaasti hyödyntäen useita vasta-aineita. Tässä opinnäytetyössä tutkitaan diffuusigliooma mIHC-näytteitä kolmelle potilastapaukselle. Jokaista potilasta kohti on 2-3 näytettä eri kasvainlaaduista ja yhteensä 18 mIHC-kanavaa per näyte, joista 6 otettiin tarkasteluun. Tarkalleen ottaen, solutyyppien aktivaatioiden osuudet positiivisten antigeenien perusteella ja keskimääräinen etäisyys lähimpään verisuoneen jokaista ryhmää kohti lasketaan eri kasvaimen laaduissa. Tavoitteen saavuttamiseksi näytteitä vastaavat kuvat rekisteröidään, tumat tunnistetaan, solualueet segmentoidaan ja kerätään jäsenneltyä tietoa alueiden intensiteettikanavista mukaan lukien sijainti ja sijaintia vastaava etäisyys lähimpään verisuoneen. Pääasiallinen löytö on, että M2-makrofagien ja T-solujen suhteelliset osuudet sekä keskimääräinen etäisyys lähimpään verisuoneen nousevat kasvaimen ollessa aggressiivisempi. Tulokset saattavat ehdottaa, että edellämainitut solutyypit ovat vähäisiä ja verisuonten lähellä kun kasvain on hyvänlaatuinen ja vastaavasti suurimilla osuuksilla ja enemmän homogeenisesti jakautunut kun kasvain on aggressiivisempi. Useista virhelähteistä ja kudosanalyysin liittyvistä ei-standardisoiduista prosesseista huolimatta, tuloksemme tukevat ennaltatiedettyä tietoa siitä, että M2-makrofagien osuudella on positiivinen korrelaatio kasvaimen laatuun

    Primer for Image Informatics in Personalized Medicine

    Get PDF
    AbstractImage informatics encompasses the concept of extracting and quantifying information contained in image data. Scenes, what an image contains, come from many imager devices such as consumer electronics, medical imaging systems, 3D laser scanners, microscopes, or satellites. There is a marked increase in image informatics applications as there have been simultaneous advances in imaging platforms, data availability due to social media, and big data analytics. An area ready to take advantage of these developments is personalized medicine, the concept where the goal is tailor healthcare to the individual. Patient health data is computationally profiled against a large of pool of feature-rich data from other patients to ideally optimize how a physician chooses care. One of the daunting challenges is how to effectively utilize medical image data in personalized medicine. Reliable data analytics products require as much automation as possible, which is a difficulty for data like histopathology and radiology images because we require highly trained expert physicians to interpret the information. This review targets biomedical scientists interested in getting started on tackling image analytics. We present high level discussions of sample preparation and image acquisition; data formats; storage and databases; image processing; computer vision and machine learning; and visualization and interactive programming. Examples will be covered using existing open-source software tools such as ImageJ, CellProfiler, and IPython Notebook. We discuss how difficult real-world challenges faced by image informatics and personalized medicine are being tackled with open-source biomedical data and software
    corecore