218 research outputs found

    DualStream: Spatially Sharing Selves and Surroundings using Mobile Devices and Augmented Reality

    Full text link
    In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone.Comment: 10 pages, 4 figures, 1 table; To appear in the proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    Quality of experience in telemeetings and videoconferencing: a comprehensive survey

    Get PDF
    Telemeetings such as audiovisual conferences or virtual meetings play an increasingly important role in our professional and private lives. For that reason, system developers and service providers will strive for an optimal experience for the user, while at the same time optimizing technical and financial resources. This leads to the discipline of Quality of Experience (QoE), an active field originating from the telecommunication and multimedia engineering domains, that strives for understanding, measuring, and designing the quality experience with multimedia technology. This paper provides the reader with an entry point to the large and still growing field of QoE of telemeetings, by taking a holistic perspective, considering both technical and non-technical aspects, and by focusing on current and near-future services. Addressing both researchers and practitioners, the paper first provides a comprehensive survey of factors and processes that contribute to the QoE of telemeetings, followed by an overview of relevant state-of-the-art methods for QoE assessment. To embed this knowledge into recent technology developments, the paper continues with an overview of current trends, focusing on the field of eXtended Reality (XR) applications for communication purposes. Given the complexity of telemeeting QoE and the current trends, new challenges for a QoE assessment of telemeetings are identified. To overcome these challenges, the paper presents a novel Profile Template for characterizing telemeetings from the holistic perspective endorsed in this paper

    The Entanglement: Volumetric Music Performances in a Virtual Metaverse Environment

    Get PDF
    Telematic music performances are an established performance practice in contemporary music. Performing music pieces with geographically distributed musicians is both a technological challenge and an artistic one. These challenges and the resulting possibilities can lead to innovative aesthetic realizations. This paper presents the implementation and realization of “The Entanglement,” a telematic concert performance in a metaverse environment. The system is realized using web-based frameworks to implement a platform-independent online multi-user environment with volumetric, three- dimensional, streaming of audio and video. This allows live performance of this improvisation piece based on an algorithmic quantum computer composition within a freely explorational virtual environment. We describe the development and realization of the piece and metaverse environment, as well as its artistic and conceptual contextualization

    Collaborative System Design of Mixed Reality Communication for Medical Training

    Get PDF
    We present the design of a mixed reality (MR) telehealth training system that aims to close the gap between in-person and distance training and re-training for medical procedures. Our system uses real-time volumetric capture as a means for communicating and relating spatial information between the non-colocated trainee and instructor. The system's design is based on a requirements elicitation study performed in situ, at a medical school simulation training center. The focus is on the lightweight real-time transmission of volumetric data - meaning the use of consumer hardware, easy and quick deployment, and low-demand computations. We evaluate the MR system design by analyzing the workload for the users during medical training. We compare in-person, video, and MR training workloads. The results indicate that the overall workload for central line placement training with MR does not increase significantly compared to video communication. Our work shows that, when designed strategically together with domain experts, an MR communication system can be used effectively for complex medical procedural training without increasing the overall workload for users significantly. Moreover, MR systems offer new opportunities for teaching due to spatial information, hand tracking, and augmented communication

    Situated Displays in Telecommunication

    Get PDF
    In face to face conversation, numerous cues of attention, eye contact, and gaze direction provide important channels of information. These channels create cues that include turn taking, establish a sense of engagement, and indicate the focus of conversation. However, some subtleties of gaze can be lost in common videoconferencing systems, because the single perspective view of the camera doesn't preserve the spatial characteristics of the face to face situation. In particular, in group conferencing, the `Mona Lisa effect' makes all observers feel that they are looked at when the remote participant looks at the camera. In this thesis, we present designs and evaluations of four novel situated teleconferencing systems, which aim to improve the teleconferencing experience. Firstly, we demonstrate the effectiveness of a spherical video telepresence system in that it allows a single observer at multiple viewpoints to accurately judge where the remote user is placing their gaze. Secondly, we demonstrate the gaze-preserving capability of a cylindrical video telepresence system, but for multiple observers at multiple viewpoints. Thirdly, we demonstrated the further improvement of a random hole autostereoscopic multiview telepresence system in conveying gaze by adding stereoscopic cues. Lastly, we investigate the influence of display type and viewing angle on how people place their trust during avatar-mediated interaction. The results show the spherical avatar telepresence system has the ability to be viewed qualitatively similarly from all angles and demonstrate how trust can be altered depending on how one views the avatar. Together these demonstrations motivate the further study of novel display configurations and suggest parameters for the design of future teleconferencing systems

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance

    New Technology and Tools to Enhance Collaborative Video Analysis in Live ‘Data Sessions’

    Get PDF
    The live ‘data session’ is arguably a significant collaborative practice amongst a group of co-present colleagues that has sustained the fermentation of emerging analyses of interactional phenomena in ethnomethodological conversation analysis for several decades. There has not, however, been much in the way of technological innovation since its inception. In this article, I outline how the data session can be enhanced (a) by using simple technologies to support the ‘silent data session’, (b) by developing software tools to present, navigate and collaborate on new types of video data in novel ways using immersive virtual reality technologies, and (c) by supporting distributed version control to nurture the freedom and safety to collaborate synchronously and asynchronously on the revision of a common transcript used in a live data session. Examples of real cases, technical solutions and best practices are given based on experience. The advantages and limitations of these significant enhancements are discussed in methodological terms with an eye to future developments

    Enhanced life-size holographic telepresence framework with real-time three-dimensional reconstruction for dynamic scene

    Get PDF
    Three-dimensional (3D) reconstruction has the ability to capture and reproduce 3D representation of a real object or scene. 3D telepresence allows the user to feel the presence of remote user that was remotely transferred in a digital representation. Holographic display is one of alternatives to discard wearable hardware restriction, it utilizes light diffraction to display 3D images to the viewers. However, to capture a real-time life-size or a full-body human is still challenging since it involves a dynamic scene. The remaining issue arises when dynamic object to be reconstructed is always moving and changes shapes and required multiple capturing views. The life-size data captured were multiplied exponentially when working with more depth cameras, it can cause the high computation time especially involving dynamic scene. To transfer high volume 3D images over network in real-time can also cause lag and latency issue. Hence, the aim of this research is to enhance life-size holographic telepresence framework with real-time 3D reconstruction for dynamic scene. There are three stages have been carried out, in the first stage the real-time 3D reconstruction with the Marching Square algorithm is combined during data acquisition of dynamic scenes captured by life-size setup of multiple Red Green Blue-Depth (RGB-D) cameras. Second stage is to transmit the data that was acquired from multiple RGB-D cameras in real-time and perform double compression for the life-size holographic telepresence. The third stage is to evaluate the life-size holographic telepresence framework that has been integrated with the real-time 3D reconstruction of dynamic scenes. The findings show that by enhancing life-size holographic telepresence framework with real-time 3D reconstruction, it has reduced the computation time and improved the 3D representation of remote user in dynamic scene. By running the double compression for the life-size holographic telepresence, 3D representations in life-size is smooth. It has proven can minimize the delay or latency during acquired frames synchronization in remote communications

    MAGIC: Manipulating Avatars and Gestures to Improve Remote Collaboration

    Get PDF
    Remote collaborative work has become pervasive in many settings, from engineering to medical professions. Users are immersed in virtual environments and communicate through life-sized avatars that enable face-to-face collaboration. Within this context, users often collaboratively view and interact with virtual 3D models, for example, to assist in designing new devices such as customized prosthetics, vehicles, or buildings. However, discussing shared 3D content face-to-face has various challenges, such as ambiguities, occlusions, and different viewpoints that all decrease mutual awareness, leading to decreased task performance and increased errors. To address this challenge, we introduce MAGIC, a novel approach for understanding pointing gestures in a face-to-face shared 3D space, improving mutual understanding and awareness. Our approach distorts the remote user\'s gestures to correctly reflect them in the local user\'s reference space when face-to-face. We introduce a novel metric called pointing agreement to measure what two users perceive in common when using pointing gestures in a shared 3D space. Results from a user study suggest that MAGIC significantly improves pointing agreement in face-to-face collaboration settings, improving co-presence and awareness of interactions performed in the shared space. We believe that MAGIC improves remote collaboration by enabling simpler communication mechanisms and better mutual awareness.Comment: Presented at IEEE VR 202

    Generative RGB-D face completion for head-mounted display removal

    Get PDF
    Head-mounted displays (HMDs) are an essential display device for the observation of virtual reality (VR) environments. However, HMDs obstruct external capturing methods from recording the user's upper face. This severely impacts social VR applications, such as teleconferencing, which commonly rely on external RGB-D sensors to capture a volumetric representation of the user. In this paper, we introduce an HMD removal framework based on generative adversarial networks (GANs), capable of jointly filling in missing color and depth data in RGB-D face images. Our framework includes an RGB-based identity loss function for identity preservation and several components aimed at surface reproduction. Our results demonstrate that our framework is able to remove HMDs from synthetic RGB-D face images while preserving the subject's identity
    • 

    corecore