2,204 research outputs found

    Collaborative spectrum sensing optimisation algorithms for cognitive radio networks

    Get PDF
    The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to minimise the interference to licensed communications. Hence, spectrum sensing is a most important requirement of a cognitive radio. However, due to the channel uncertainties, local observations are not reliable and collaboration among users is required. Selection of fusion rule at a common receiver has a direct impact on the overall spectrum sensing performance. In this paper, optimisation of collaborative spectrum sensing in terms of optimum decision fusion is studied for hard and soft decision combining. It is concluded that for optimum fusion, the fusion centre must incorporate signal-to-noise ratio values of cognitive users and the channel conditions. A genetic algorithm-based weighted optimisation strategy is presented for the case of soft decision combining. Numerical results show that the proposed optimised collaborative spectrum sensing schemes give better spectrum sensing performance

    A Message Passing Approach for Decision Fusion in Adversarial Multi-Sensor Networks

    Full text link
    We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error at the fusion center. When independent states are considered, the optimum fusion rule over a batch of observations has already been derived, however its complexity prevents its use in conjunction with large observation windows. In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good performance also in the case of dependent system states. By first focusing on the case of small observation windows, we use numerical simulations to show that the proposed scheme introduces a negligible increase of the decision error probability compared to the optimum fusion rule. We then analyse the performance of the new scheme when the FC make its decision by relying on long observation windows. We do so by considering both the case of independent and Markovian system states and show that the obtained performance are superior to those obtained with prior suboptimal schemes. As an additional result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to minimise the mutual information between the sequence system states and the reports submitted to the FC, rather than always flipping the local decision

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Autonomous functionalities for cognitive radio

    Get PDF
    This paper provides an overview on the research activities in autonomous functionalities for cognitive radio and networks, carried out in FP7/E3-project. The identified main research areas within this topic include opportunistic spectrum access and autonomous self-x functionalities for communication nodes. Opportunistic spectrum access delineates innovative topics concerning distributed cooperative spectrum sensing, collaborative MAC algorithms, distributed radio resource management algorithms, and control mechanisms for the opportunistic spectrum access. In autonomous self-x functionalities the research covers cognitive device management, autonomous RAT and operator selection and self-x features for autonomous elements, including autonomous decision making functionalities for RAT protocol configuration, negotiation on missing RAT protocol components, and functionality for dynamic configuration of RAT protocol components.Postprint (published version

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
    • …
    corecore