39,415 research outputs found

    Towards Cleaning-up Open Data Portals: A Metadata Reconciliation Approach

    Full text link
    This paper presents an approach for metadata reconciliation, curation and linking for Open Governamental Data Portals (ODPs). ODPs have been lately the standard solution for governments willing to put their public data available for the society. Portal managers use several types of metadata to organize the datasets, one of the most important ones being the tags. However, the tagging process is subject to many problems, such as synonyms, ambiguity or incoherence, among others. As our empiric analysis of ODPs shows, these issues are currently prevalent in most ODPs and effectively hinders the reuse of Open Data. In order to address these problems, we develop and implement an approach for tag reconciliation in Open Data Portals, encompassing local actions related to individual portals, and global actions for adding a semantic metadata layer above individual portals. The local part aims to enhance the quality of tags in a single portal, and the global part is meant to interlink ODPs by establishing relations between tags.Comment: 8 pages,10 Figures - Under Revision for ICSC201

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments

    Applying Semantic Web Technologies to Medieval Manuscript Research

    Get PDF
    Medieval manuscript research is a complex, fragmented, multilingual field of knowledge, which is difficult to navigate, analyse and exploit. Though printed sources are still of great importance and value to researchers, there are now many services on the Web, some commercial and many in the public domain. At present, these services have to be consulted separately and individually. They employ a range of different descriptive standards and vocabularies, and use a variety of technologies to make their information available on the Web. This chapter proposes a new approach to organizing the international collaborative infrastructure for interlinking knowledge and research about medieval European manuscripts, based on technologies associated with the Semantic Web and the Linked Data movement. This collaborative infrastructure will be an open space on the Web where information about medieval manuscripts can be shared, stored, exchanged and updated for research purposes. It will be possible to ask large-scale research questions across the virtual global manuscript collection, in a quicker and more effective way than has ever been feasible in the past. The proposed infrastructure will focus on building links between data and will provide the basis for new kinds of services which exploit these data. It will not aim to impose a single metadata standard on existing manuscript services, but will build on existing databases and vocabularies. The article describes the architecture, services and data which will comprise this infrastructure, and discusses strategies for making th challenging and exciting goal a reality

    From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web

    Full text link
    In the process of scientific research, many information objects are generated, all of which may remain valuable indefinitely. However, artifacts such as instrument data and associated calibration information may have little value in isolation; their meaning is derived from their relationships to each other. Individual artifacts are best represented as components of a life cycle that is specific to a scientific research domain or project. Current cataloging practices do not describe objects at a sufficient level of granularity nor do they offer the globally persistent identifiers necessary to discover and manage scholarly products with World Wide Web standards. The Open Archives Initiative's Object Reuse and Exchange data model (OAI-ORE) meets these requirements. We demonstrate a conceptual implementation of OAI-ORE to represent the scientific life cycles of embedded networked sensor applications in seismology and environmental sciences. By establishing relationships between publications, data, and contextual research information, we illustrate how to obtain a richer and more realistic view of scientific practices. That view can facilitate new forms of scientific research and learning. Our analysis is framed by studies of scientific practices in a large, multi-disciplinary, multi-university science and engineering research center, the Center for Embedded Networked Sensing (CENS).Comment: 28 pages. To appear in the Journal of the American Society for Information Science and Technology (JASIST

    Metadata enrichment for digital heritage: users as co-creators

    Get PDF
    This paper espouses the concept of metadata enrichment through an expert and user-focused approach to metadata creation and management. To this end, it is argued the Web 2.0 paradigm enables users to be proactive metadata creators. As Shirky (2008, p.47) argues Web 2.0’s social tools enable “action by loosely structured groups, operating without managerial direction and outside the profit motive”. Lagoze (2010, p. 37) advises, “the participatory nature of Web 2.0 should not be dismissed as just a popular phenomenon [or fad]”. Carletti (2016) proposes a participatory digital cultural heritage approach where Web 2.0 approaches such as crowdsourcing can be sued to enrich digital cultural objects. It is argued that “heritage crowdsourcing, community-centred projects or other forms of public participation”. On the other hand, the new collaborative approaches of Web 2.0 neither negate nor replace contemporary standards-based metadata approaches. Hence, this paper proposes a mixed metadata approach where user created metadata augments expert-created metadata and vice versa. The metadata creation process no longer remains to be the sole prerogative of the metadata expert. The Web 2.0 collaborative environment would now allow users to participate in both adding and re-using metadata. The case of expert-created (standards-based, top-down) and user-generated metadata (socially-constructed, bottom-up) approach to metadata are complementary rather than mutually-exclusive. The two approaches are often mistakenly considered as dichotomies, albeit incorrectly (Gruber, 2007; Wright, 2007) . This paper espouses the importance of enriching digital information objects with descriptions pertaining the about-ness of information objects. Such richness and diversity of description, it is argued, could chiefly be achieved by involving users in the metadata creation process. This paper presents the importance of the paradigm of metadata enriching and metadata filtering for the cultural heritage domain. Metadata enriching states that a priori metadata that is instantiated and granularly structured by metadata experts is continually enriched through socially-constructed (post-hoc) metadata, whereby users are pro-actively engaged in co-creating metadata. The principle also states that metadata that is enriched is also contextually and semantically linked and openly accessible. In addition, metadata filtering states that metadata resulting from implementing the principle of enriching should be displayed for users in line with their needs and convenience. In both enriching and filtering, users should be considered as prosumers, resulting in what is called collective metadata intelligence

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information
    corecore