7 research outputs found

    Real-Time Realistic Social Sharing of Experiences and Environments

    Get PDF
    The Shared Experonments system provides interactive services for ubiquitous real-time interactive social sharing of experiences and environments. Designed and implemented for ubiquitous high-speed wireless environments, the Shared Experonments system provides synchronous ways and means for interactive social sharing of erstwhile personal experiences while one or more persons are in remote locations. Example scenarios include sharing of experiences with friends and family while off hiking or trekking, as well as business situations where a remote field worker must collaborate in real time with other field workers or head office. The Shared Experonments system integrates multiple realities and works in a variety of mixed reality modes and interactional settings, and crucially supports deixis from one environment to another

    Probabilistic Human-Robot Information Fusion

    Get PDF
    This thesis is concerned with combining the perceptual abilities of mobile robots and human operators to execute tasks cooperatively. It is generally agreed that a synergy of human and robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems, while also increasing their robustness and reliability. Systems which incorporate both human and robotic information sources have the potential to build complex world models, essential for both automated and human decision making. In this work, humans and robots are regarded as equal team members who interact and communicate on a peer-to-peer basis. Human-robot communication is addressed using probabilistic representations common in robotics. While communication can in general be bidirectional, this work focuses primarily on human-to-robot information flow. More specifically, the approach advocated in this thesis is to let robots fuse their sensor observations with observations obtained from human operators. While robotic perception is well-suited for lower level world descriptions such as geometric properties, humans are able to contribute perceptual information on higher abstraction levels. Human input is translated into the machine representation via Human Sensor Models. A common mathematical framework for humans and robots reinforces the notion of true peer-to-peer interaction. Human-robot information fusion is demonstrated in two application domains: (1) scalable information gathering, and (2) cooperative decision making. Scalable information gathering is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned air vehicle, and two human operators in a natural environment. Information from humans and robots was fused in a fully decentralised manner to build a shared environment representation on multiple abstraction levels. Results are presented in the form of information exchange patterns, qualitatively demonstrating the benefits of human-robot information fusion. The second application domain adds decision making to the human-robot task. Rational decisions are made based on the robots’ current beliefs which are generated by fusing human and robotic observations. Since humans are considered a valuable resource in this context, operators are only queried for input when the expected benefit of an observation exceeds the cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the adjustable autonomy system experimentally. Results from two experiments are reported: a quantitative evaluation of human-robot team effectiveness, and a user study to compare the system to classical teleoperation. Results show the superiority of the system with respect to performance, operator workload, and usability

    Socially-Driven Collective Path Planning for Robot Missions

    Full text link

    Algorithms, Protocols & Systems for Remote Observation Using Networked Robotic Cameras

    Get PDF
    Emerging advances in robotic cameras, long-range wireless networking, and distributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic remote "observatories" that can allow groups of peoples, via the Internet, to observe, record, and index detailed activity occurred in remote site. Equipped with robotic pan-tilt actuation mechanisms and a high-zoom lens, the camera can cover a large region with very high spatial resolution and allows for observation at a distance. High resolution motion panorama is the most nature data representation. We develop algorithms and protocols for high resolution motion panorama. We discover and prove the projection invariance and achieve real time image alignment. We propose a minimum variance based incremental frame alignment algorithm to minimize the accumulation of alignment error in incremental image alignment and ensure the quality of the panorama video over the long run. We propose a Frame Graph based panorama documentation algorithm to manage the large scale data involved in the online panorama video documentation. We propose a on-demand high resolution panorama video-streaming system that allows on-demand sharing of a high-resolution motion panorama and efficiently deals with multiple concurrent spatial-temporal user requests. In conclusion, our research work on high resolution motion panorama have significantly improve the efficiency and accuracy of image alignment, panorama video quality, data organization, and data storage and retrieving in remote observation using networked robotic cameras

    Collaborative Online Teleoperation with Spatial Dynamic Voting and a Human "Tele-Actor"

    No full text
    Internet-based “online robots” now provide public access to remote locations such as museums and laboratories. The Tele-Actor is a collaborative online teleoperation system for distance learning that allows many students to simultaneously share control of a single mobile resource. Our goal is to preserve the educational advantages of field trips without the drawbacks of group travel. We propose the “Spatial Dynamic Voting” (SDV) interface for Multiple Operator Single Robot (MOSR) teleoperation. The SDV collects, displays, and analyzes a sequence of spatial votes from multiple online operators at their Internet browsers. The votes drive the motion of a single mobile robot or human “Tele-Actor”. This paper describes Version 3.0 of the system architecture, SDV interface, algorithms for automated goal selection, and metrics for collaboration and leadership. We report results from a July 2001 field test with 56 remote users. See: www.tele-actor.net

    Systematic Approach for the Development of Remote Handling System Concepts for High Energy Physics Research Facilities

    Get PDF
    Equipment maintenance is one of the most important areas in the life-cycle management of High Energy Physics (HEP) facilities. In HEP facilities (such as CERN, ISOLDE, GSI/FAIR,GANIL, FRIB and ESS), beam intensities are increasing. Ionizing radiation is a significant hazard. The ionizing radiation directly affects the health of radiation workers and therefore it is desirable to reduce human intervention through robotic operations. The Facility of Antiproton and Ion Research (FAIR), a HEP facility under construction in Darmstadt, Germany, will house the world’s most powerful Super Fragment Separator(Super-FRS) facility, which will require remote maintenance. One section of the Super-FRS is termed the main tunnel. This is 160m long and has four focal planes. The Super-FRS beamline inserts will require remote maintenance and remote inspection. To carry out these Remote Handling (RH) tasks, a RH system for the Super-FRS main tunnel is essential.RH equipment for HEP facilities are complex systems. They must operate within an intricate environment with multiple interfaces. However, there is very limited literature on how to approach the development and evaluation of RH concepts at HEP facilities even though various facilities have developed RH systems tailored to their individual environments.This thesis proposes new systematic approach for developing and evaluation of RH concept designs targeted to help maintenance procedures at HEP facilities. The systematic approach is composed of Systems Engineering (SE) State of the Art practices molded to fit HEP facilities needs and requirements. The SE approach for HEP facilities focuses on finding optimum RH solution by exploiting HEP facilities limited resources available compared to nuclear power production industry. The systematic approach is tested to develop the RH maintenance solution for Super-FRS main tunnel scenario for FAIR facility. The practice carried out during this research work resulted in the best possible RH solution for Super-FRS and is currently under development for the Super-FRS facility.The research work to develop systematic approach for development of RH system was based on a very critical State of the Art study that has not been carried for HEP facilities till now. The State of the Art studies explores the HEP facilities in detail and results in: classification of HEP facilities RH environments, classification of RH equipment currently used at HEP facilities and present status of SE knowledge integration within HEP facilities. The systematic approach to develop RH system and knowledge attained during State of the Art studies are utilized to develop three RH system concept designs that fulfill the Super-FRS RH requirements. This research work focuses on collaborating between RH experts to conduct reliable and creditable trade-off analysis for RH system concepts evaluation. The aim of collaboration with RH experts is to develop diversify the systematic approach for RH system concept development. The collaboration and the State of the Art studies enable the model to formalize the procedures that will ensure the integration of RH needs into facility’s development by classifying (Commercial Off-the–Shelf (COTS)) RH equipment and by identifying key steps in the development of RH concepts.The developed RH concepts for Super-FRS are evaluated for requirements traceability, functional analysis, radiation dose analysis, possible system failure scenarios, including cost estimates, and task sequence optimization analysis. The result of trade-off analysis is delivered in the form of optimal RH system design that fulfills the RH requirements and will be developed to carry out RH tasks at Super-FRS facility.This thesis provides details concerning each concept design’s merits and demerits, along with suggestions for design changes needed to improve RH system’s flexibility and performance. The systematic approach used to develop the RH concepts was used to identify and address the critical issues with Super-FRS tunnel layout, beamline insert designs, storage / transport of activated parts, and remote maintenance integration at very early stage of HEP facility design.The research work in this thesis paves the way for the future systematic RH systems concepts design, and development practices; by moving beyond the classical approaches to develop concept designs at the HEP facilities. The conclusion will also present a summary design comparison, relevant technologies, advantages, limitations and future research work opportunities.<br/

    Collaborative Online Teleoperation with Spatial Dynamic Voting and a Human &quot;Tele-Actor&quot;

    No full text
    This paper describes Version 3.0 of the system architecture, SDV interface, algorithms for automated goal selection, and metrics for collaboration and leadership. We report results from a July 2001 field test with 56 remote users. See: www.tele-actor.ne
    corecore