53 research outputs found

    Super-intelligence Challenges and Lossless Visual Representation of High-Dimensional Data

    Get PDF
    Fundamental challenges and goals of the cognitive algorithms are moving super-intelligent machines and super-intelligent humans from dreams to reality. This paper is devoted to a technical way to reach some specific aspects of super-intelligence that are beyond the current human cognitive abilities. Specifically the proposed technique is to overcome inabilities to analyze a large amount of abstract numeric high-dimensional data and finding complex patterns in these data with a naked eye. Discovering patterns in multidimensional data using visual means is a long-standing problem in multiple fields and Data Science and Modeling in general. The major challenge is that we cannot see n-D data by a naked eye and need visualization tools to represent n-D data in 2-D losslessly. The number of available lossless methods is quite limited. The objective of this paper is expanding the class of such lossless methods, by proposing a new concept of Generalized Shifted Collocated Paired Coordinates. The paper shows the advantages of proposed lossless technique by proving mathematical properties and by demonstration on real data

    Visual Data Mining

    Get PDF
    Occlusion is one of the major problems for interactive visual knowledge discovery and data mining in the process of finding patterns in multidimensional data.This project proposes a hybrid method that combines visual and analytical means to deal with occlusion in visual knowledge discovery called as GLC-S which uses visualization of n-D data in 2D in a set of Shifted Paired Coordinates (SPC). A set of Shifted Paired Coordinates for n-D data consists of n/2 pairs of common Cartesian coordinates that are shifted relative to each other to avoid their overlap. Each n-D point A is represented as a directed graph A* in SPC, where each node is the 2D projection of A in a respective pair of the Cartesian coordinates. The proposed GLC-S method significantly decrease cognitive load for analysis of n-D data and simplify pattern discovery in n-D data. The GLC-S method iteratively splits n-D data into non-overlapping clusters (hyper-rectangles) around local centers and visualizes only data within these clusters at each iteration. The requirements for these clusters are to contain cases of only one class and be the largest cluster with this property in SPC visualization. Such sequential splitting allows: (1) avoiding occlusion, (2) finding visually local classification patterns, rules, and (3) combine local sub-rules to a global rule that classifies all given data of two or more classes. The computational experiment with Wisconsin Breast Cancer data(9-D), User Knowledge Modeling data(6-D), and Letter Recognition data(17-D) from UCI Machine Learning Repository confirm this capability. At each iteration, these data have been split into training (70%) and validation (30%) data. It required 3 iterations in Wisconsin Breast Cancer data, 4 iterations in User Knowledge Modeling and 5 iterations in Letter Recognition data and respectively 3, 4, 5 local sub-rules that covered over 95% of all n-D data points with 100% accuracy at both training and validation experiments. After each iteration, the data that were used in this iteration are removed and remaining data are used in the next iteration. This removal process helps to decrease occlusion too. The GLC-S algorithm refuses to classify remaining cases that are not covered by these rules, i.e.,., do not belong to found hyper-rectangles. The interactive visualization process in SPC allows adjusting the sides of the hyper-rectangles to maximize the size of the hyper-rectangle without its overlap with the hyper-rectangles of the opposing classes. The GLC-S method splits data using the fixed split of n coordinates to pairs. This hybrid visual and analytical approach avoids throwing all data of several classes into a visualization plot that typically ends up in a messy highly occluded picture that hides useful patterns. This approach allows revealing these hidden patterns. The visualization process in SPC is reversible (lossless). i.e.,., all n-D information is visualized in 2D and can be restored from 2D visualization for each n-D case. This hybrid visual analytics method allowed classifying n-D data in a way that can be communicated to the user’s in the understandable and visual form

    Concentric RadViz: visual exploration of multi-task classification

    Get PDF
    The discovery of patterns in large data collections is a difficult task. Visualization and machine learning techniques have emerged as a way to facilitate data analysis, providing tools to uncover relevant patterns from the data. This paper presents Concentric RadViz, a general purpose class visualization system that takes into account multi-class, multi-label and multi-task classifiers. Concentric RadViz uses a force attenuation scheme, which minimizes cluttering and ambiguity in the visual layout. In addition, the user can add concentric circles to the layout in order to represent classification tasks. Our validation results and the application of Concentric RadViz for two real collections suggest that this tool can reveal important data patterns and relations. In our application, the user can interact with the visualization by selecting regions of interest according to specific criteria and changing projection parameters.FAPESP (#2011/22749- 8, #2012/17961-0, #2012/24801-0, #2014/09546-9, #2014/18665-1)CNPq (#132239/2013-2, #305796/2013- 5, #302643/2013-3

    Constructing Interactive Visual Classification, Clustering and Dimension Reduction Models for n-D Data

    Get PDF
    The exploration of multidimensional datasets of all possible sizes and dimensions is a long-standing challenge in knowledge discovery, machine learning, and visualization. While multiple efficient visualization methods for n-D data analysis exist, the loss of information, occlusion, and clutter continue to be a challenge. This paper proposes and explores a new interactive method for visual discovery of n-D relations for supervised learning. The method includes automatic, interactive, and combined algorithms for discovering linear relations, dimension reduction, and generalization for non-linear relations. This method is a special category of reversible General Line Coordinates (GLC). It produces graphs in 2-D that represent n-D points losslessly, i.e., allowing the restoration of n-D data from the graphs. The projections of graphs are used for classification. The method is illustrated by solving machine-learning classification and dimension-reduction tasks from the domains of image processing, computer-aided medical diagnostics, and finance. Experiments conducted on several datasets show that this visual interactive method can compete in accuracy with analytical machine learning algorithms

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Collaborative Lossless Visualization of n-D Data by Collocated Paired Coordinates

    No full text
    The collaborative approach is a natural way to enhance visualization and visual analytics methods. This paper continues our long-term efforts on enhancement of visualization and visual analytics methods. The major challenges in visualization of large n-D data in 2-D are not only in providing lossless visualization by using sophisticated computational methods, but also in supporting the most efficient and fast usage of abilities of users (agents) to analyze visualized information and to extract patterns visually. This paper describes a collaborative approach to support n-D data visualization based on new lossless n-D visualization methods that we propose. The second part of this work presented in a separate paper is focused on experimental results of cooperative n-D data visualization described in this paper

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Multimedia Retrieval

    Get PDF
    • …
    corecore