3,732 research outputs found

    Collaborative Layer-wise Discriminative Learning in Deep Neural Networks

    Full text link
    Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it is unnecessary to enforce rest layers to classify this sample correctly and a better strategy is to encourage those layers to focus on other samples. In this paper, we propose a layer-wise discriminative learning method to enhance the discriminative capability of a deep network by allowing its layers to work collaboratively for classification. Towards this target, we introduce multiple classifiers on top of multiple layers. Each classifier not only tries to correctly classify the features from its input layer, but also coordinates with other classifiers to jointly maximize the final classification performance. Guided by the other companion classifiers, each classifier learns to concentrate on certain training examples and boosts the overall performance. Allowing for end-to-end training, our method can be conveniently embedded into state-of-the-art deep networks. Experiments with multiple popular deep networks, including Network in Network, GoogLeNet and VGGNet, on scale-various object classification benchmarks, including CIFAR100, MNIST and ImageNet, and scene classification benchmarks, including MIT67, SUN397 and Places205, demonstrate the effectiveness of our method. In addition, we also analyze the relationship between the proposed method and classical conditional random fields models.Comment: To appear in ECCV 2016. Maybe subject to minor changes before camera-ready versio

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Collaborative Deep Learning for Speech Enhancement: A Run-Time Model Selection Method Using Autoencoders

    Full text link
    We show that a Modular Neural Network (MNN) can combine various speech enhancement modules, each of which is a Deep Neural Network (DNN) specialized on a particular enhancement job. Differently from an ordinary ensemble technique that averages variations in models, the propose MNN selects the best module for the unseen test signal to produce a greedy ensemble. We see this as Collaborative Deep Learning (CDL), because it can reuse various already-trained DNN models without any further refining. In the proposed MNN selecting the best module during run time is challenging. To this end, we employ a speech AutoEncoder (AE) as an arbitrator, whose input and output are trained to be as similar as possible if its input is clean speech. Therefore, the AE can gauge the quality of the module-specific denoised result by seeing its AE reconstruction error, e.g. low error means that the module output is similar to clean speech. We propose an MNN structure with various modules that are specialized on dealing with a specific noise type, gender, and input Signal-to-Noise Ratio (SNR) value, and empirically prove that it almost always works better than an arbitrarily chosen DNN module and sometimes as good as an oracle result

    Domain Conditioned Adaptation Network

    Full text link
    Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.Comment: Accepted by AAAI 202

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030
    • …
    corecore