5,636 research outputs found

    Near-Optimal Algorithms for Online Matrix Prediction

    Full text link
    In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering in which a widely used comparison class is the set of matrices with a small trace norm. In this paper we isolate a property of matrices, which we call (beta,tau)-decomposability, and derive an efficient online learning algorithm, that enjoys a regret bound of O*(sqrt(beta tau T)) for all problems in which the comparison class is composed of (beta,tau)-decomposable matrices. By analyzing the decomposability of cut matrices, triangular matrices, and low trace-norm matrices, we derive near optimal regret bounds for online max-cut, online gambling, and online collaborative filtering. In particular, this resolves (in the affirmative) an open problem posed by Abernethy (2010); Kleinberg et al (2010). Finally, we derive lower bounds for the three problems and show that our upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online collaborative filtering problem resolves another open problem posed by Shamir and Srebro (2011).Comment: 25 page

    Regret Bounds and Regimes of Optimality for User-User and Item-Item Collaborative Filtering

    Full text link
    We consider an online model for recommendation systems, with each user being recommended an item at each time-step and providing 'like' or 'dislike' feedback. Each user may be recommended a given item at most once. A latent variable model specifies the user preferences: both users and items are clustered into types. All users of a given type have identical preferences for the items, and similarly, items of a given type are either all liked or all disliked by a given user. We assume that the matrix encoding the preferences of each user type for each item type is randomly generated; in this way, the model captures structure in both the item and user spaces, the amount of structure depending on the number of each of the types. The measure of performance of the recommendation system is the expected number of disliked recommendations per user, defined as expected regret. We propose two algorithms inspired by user-user and item-item collaborative filtering (CF), modified to explicitly make exploratory recommendations, and prove performance guarantees in terms of their expected regret. For two regimes of model parameters, with structure only in item space or only in user space, we prove information-theoretic lower bounds on regret that match our upper bounds up to logarithmic factors. Our analysis elucidates system operating regimes in which existing CF algorithms are nearly optimal.Comment: 51 page

    Efficient Transductive Online Learning via Randomized Rounding

    Full text link
    Most traditional online learning algorithms are based on variants of mirror descent or follow-the-leader. In this paper, we present an online algorithm based on a completely different approach, tailored for transductive settings, which combines "random playout" and randomized rounding of loss subgradients. As an application of our approach, we present the first computationally efficient online algorithm for collaborative filtering with trace-norm constrained matrices. As a second application, we solve an open question linking batch learning and transductive online learningComment: To appear in a Festschrift in honor of V.N. Vapnik. Preliminary version presented in NIPS 201
    • …
    corecore