9,965 research outputs found

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Studying and handling iterated algorithmic biases in human and machine learning interaction.

    Get PDF
    Algorithmic bias consists of biased predictions born from ingesting unchecked information, such as biased samples and biased labels. Furthermore, the interaction between people and algorithms can exacerbate bias such that neither the human nor the algorithms receive unbiased data. Thus, algorithmic bias can be introduced not only before and after the machine learning process but sometimes also in the middle of the learning process. With a handful of exceptions, only a few categories of bias have been studied in Machine Learning, and there are few, if any, studies of the impact of bias on both human behavior and algorithm performance. Although most research treats algorithmic bias as a static factor, we argue that algorithmic bias interacts with humans in an iterative manner producing a long-term effect on algorithms\u27 performance. Recommender systems involve the natural interaction between humans and machine learning algorithms that may introduce bias over time during a continuous feedback loop, leading to increasingly biased recommendations. Therefore, in this work, we view a Recommender system environment as generating a continuous chain of events as a result of the interactions between users and the recommender system outputs over time. For this purpose, In the first part of this dissertation, we employ an iterated-learning framework that is inspired from human language evolution to study the impact of interaction between machine learning algorithms and humans. Specifically, our goal is to study the impact of the interaction between two sources of bias: the process by which people select information to label (human action); and the process by which an algorithm selects the subset of information to present to people (iterated algorithmic bias mode). Specifically, we investigate three forms of iterated algorithmic bias (i.e. personalization filter, active learning, and a random baseline) and how they affect the behavior of machine learning algorithms. Our controlled experiments which simulate content-based filters, demonstrate that the three iterated bias modes, initial training data class imbalance, and human action affect the models learned by machine learning algorithms. We also found that iterated filter bias, which is prominent in personalized user interfaces, can lead to increased inequality in estimated relevance and to a limited human ability to discover relevant data. In the second part of this dissertation work, we focus on collaborative filtering recommender systems which suffer from additional biases due to the popularity of certain items, which when coupled with the iterated bias emerging from the feedback loop between human and algorithms, leads to an increased divide between the popular items (the haves) and the unpopular items (the have-nots). We thus propose several debiasing algorithms, including a novel blind spot aware matrix factorization algorithm, and evaluate how our proposed algorithms impact both prediction accuracy and the trends of increase or decrease in the inequality of the popularity distribution of items over time. Our findings indicate that the relevance blind spot (items from the testing set whose predicted relevance probability is less than 0.5) amounted to 4\% of all relevant items when using a content-based filter that predicts relevant items. A similar simulation using a real-life rating data set found that the same filter resulted in a blind spot size of 75\% of the relevant testing set. In the case of collaborative filtering for synthetic rating data, and when using 20 latent factors, Conventional Matrix Factorization resulted in a ranking-based blind spot (items whose predicted ratings are below 90\% of the maximum predicted ratings) ranging between 95\% and 99\% of all items on average. Both Propensity-based Matrix Factorization methods resulted in blind spots consisting of between 94\% and 96\% of all items; while the Blind spot aware Matrix Factorization resulted in a ranking-based blind spot with around 90\% to 94\% of all items. For a semi-synthetic data (a real rating data completed with Matrix Factorization), Matrix Factorization using 20 latent factors, resulted in a ranking-based blind spot containing between 95\% and 99\% of all items. Popularity-based and Poisson based propensity-based Matrix Factorization resulted in a ranking-based blind spot with between 96\% and 97\% if all items; while the blind spot aware Matrix Factorization resulted in a ranking-based blind spot with between 92\% and 96\% of all items. Considering that recommender systems are typically used as gateways that filter massive amounts of information (in the millions) for relevance, these blind spot percentage result differences (every 1\% amounts to tens of thousands of items or options) show that debiasing these systems can have significant repercussions on the amount of information and the space of options that can be discovered by humans who interact with algorithmic filters

    Modeling and counteracting exposure bias in recommender systems.

    Get PDF
    Recommender systems are becoming widely used in everyday life. They use machine learning algorithms which learn to predict our preferences and thus influence our choices among a staggering array of options online, such as movies, books, products, and even news articles. Thus what we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated predictions made by learning machines. Similarly, the predictive accuracy of these learning machines heavily depends on the feedback data, such as ratings and clicks, that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown biases which can be exacerbated after several iterations of machine learning predictions and user feedback. Such machine-caused biases risk leading to undesirable social effects such as polarization, unfairness, and filter bubbles. In this research, we aim to study the bias inherent in widely used recommendation strategies such as matrix factorization and its impact on the diversity of the recommendations. We also aim to develop probabilistic models of the bias that is borne from the interaction between the user and the recommender system and to develop debiasing strategies for these systems. We present a theoretical framework that can model the behavioral process of the user by considering item exposure before user interaction with the model. We also track diversity metrics to measure the bias that is generated in recommender systems, and thus study their effect throughout the iterations. Finally, we try to mitigate the recommendation system bias by engineering solutions for several state of the art recommender system models. Our results show that recommender systems are biased and depend on the prior exposure of the user. We also show that the studied bias iteratively decreases diversity in the output recommendations. Our debiasing method demonstrates the need for alternative recommendation strategies that take into account the exposure process in order to reduce bias. Our research findings show the importance of understanding the nature of and dealing with bias in machine learning models such as recommender systems that interact directly with humans, and are thus causing an increasing influence on human discovery and decision making

    Modeling and debiasing feedback loops in collaborative filtering recommender systems.

    Get PDF
    Artificial Intelligence (AI)-driven recommender systems have been gaining increasing ubiquity and influence in our daily lives, especially during time spent online on the World Wide Web or smart devices. The influence of recommender systems on who and what we can find and discover, our choices, and our behavior, has thus never been more concrete. AI can now predict and anticipate, with varying degrees of accuracy, the news article we will read, the music we will listen to, the movies we will watch, the transactions we will make, the restaurants we will eat in, the online courses we will be interested in, and the people we will connect with for various ends and purposes. For all these reasons, the automated predictions and recommendations made by AI can lead to influencing and changing human opinions, behavior, and decision making. When the AI predictions are biased, the influences can have unfair consequences on society, ranging from social polarization to the amplification of misinformation and hate speech. For instance, bias in recommender systems can affect the decision making and shift consumer behavior in an unfair way due to a phenomenon known as the feedback loop. The feedback loop is an inherent component of recommender systems because the latter are dynamic systems that involve continuous interactions with the users, whereby data collected to train a recommender system model is usually affected by the outputs of a previously trained model. This feedback loop is expected to affect the performance of the system. For instance, it can amplify initial bias in the data or model and can lead to other phenomena such as filter bubbles, polarization, and popularity bias. Up to now, it has been difficult to understand the dynamics of recommender system feedback loops, and equally challenging to evaluate the bias and filter bubbles emerging from recommender system models within such an iterative closed loop environment. In this dissertation, we study the feedback loop in the context of Collaborative Filtering (CF) recommender systems. CF systems comprise the leading family of recommender systems that rely mainly on mining the patterns of interaction between the users and items to train models that aim to predict future user interactions. Our research contributions target three aspects of recommendation, namely modeling, debiasing and evaluating feedback loops. Our research advances the state of the art in Fairness in Artificial Intelligence on several fronts: (1) We propose and validate a new theoretical model, based on Martingale differences, to model the recommender system feedback loop, and allow a better understanding of the dynamics of filter bubbles and user discovery. (2) We propose a Transformer-based deep learning architecture and algorithm to learn diverse representations for users and items in order to increase the diversity in the recommendations. Our evaluation experiments on real world datasets demonstrate that our transformer model recommends 14\% more diverse items and improves the novelty of the recommendation by more than 20\%. (3) We propose a new simulation and experimentation framework that allows studying and tracking the evolution of bias metrics in a feedback loop setting, for a variety of recommendation modeling algorithms. Our preliminary findings, using the new simulation framework show that recommender systems are deeply affected by the feedback loop, and that without an adequate debiasing or exploration strategy, this feedback loop limits the discovery of the user and increases the disparity in exposure between items that can be recommended. To help the research and practice community in studying recommender system fairness, all the tools developed to model, debias, and evaluate recommender systems are made available to the public as open source software libraries \footnote{https://github.com/samikhenissi/TheoretUserModeling}. (4) We propose a novel learnable dynamic debiasing strategy that learns an optimal rescaling parameter for the predicted rating and achieves a better trade-off between accuracy and debiasing. We focus on solving the popularity bias of the items and test our method using our proposed simulation framework and show the effectiveness of using a learnable debiasing degree to produce better results
    corecore