937 research outputs found

    Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking

    Full text link
    Content-Centric Networking (CCN) is an emerging networking paradigm being considered as a possible replacement for the current IP-based host-centric Internet infrastructure. In CCN, named content becomes a first-class entity. CCN focuses on content distribution, which dominates current Internet traffic and is arguably not well served by IP. Named-Data Networking (NDN) is an example of CCN. NDN is also an active research project under the NSF Future Internet Architectures (FIA) program. FIA emphasizes security and privacy from the outset and by design. To be a viable Internet architecture, NDN must be resilient against current and emerging threats. This paper focuses on distributed denial-of-service (DDoS) attacks; in particular we address interest flooding, an attack that exploits key architectural features of NDN. We show that an adversary with limited resources can implement such attack, having a significant impact on network performance. We then introduce Poseidon: a framework for detecting and mitigating interest flooding attacks. Finally, we report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013

    An Implementation Of Botnet Detection Algorithm For Grid Networks

    Get PDF
    Grid is an emerging technology that aims at utilizing resources efficiently and effectively, A botnet is a collection of infected computers and the common attacks are A Distributed denial of service attack (DDOS) is any type of attack on a networking structure to disable a server from servicing its clients. Attacks range from sending millions of requests to a server in an attempt to slow it down, flooding a server with large packets of invalid data, to sending requests with an Invalid or spoofed ip address. A botnet is taking action on the client itself via IRC Channels without the hackers having to login to the clients computer. In this paper we show the implementation and analysis of three main types of attack: Ping of Death, TCP SYN Flood, and Distributed DOS. The Ping of Death attack will be simulated against a Microsoft Windows xp, computer. The TCP SYN Flood attack will be simulated against a Microsoft Windows 2007 IIS FTP Server. Distributed DOS will be demonstrated by simulating a distribution zombie program that will carry the Ping of Death attack. This paper focuses on improving the efficiency of the system performance over the network by implementing algorithm, It demonstrate the potential damage from DOS attacks and analyze the ramifications of the damage

    Collaborative internet worm containment

    Get PDF
    Large-scale worm outbrakes that leads to distributed denial-of-dervice attacks pose a major threat to internet infrastructure security. To prevent computers from such attacks deployment of fast, scalable security overlay networks based on distributed hash tables to facilitate high-speed intrusion detection and alert-information exchange are proposed. An effective system for worm detection and cyberspace defence must have robustness, cooperation among multiple sites, responsiveness to unexpected worms and efficiency and scalability. Deployment of collaborative WormShield monitors on just 1 percent of the vulnerable edge networks can detect worm signatures roughly 10 times faster than with independent monitors.published_or_final_versio

    Collaborative Intrusion Detection in Federated Cloud Environments

    Get PDF
    Moving services to the Cloud is a trend that has steadily gained popularity over recent years, with a constant increase in sophistication and complexity of such services. Today, critical infrastructure operators are considering moving their services and data to the Cloud. Infrastructure vendors will inevitably take advantage of the benefits Cloud Computing has to offer. As Cloud Computing grows in popularity, new models are deployed to exploit even further its full capacity, one of which is the deployment of Cloud federations. A Cloud federation is an association among different Cloud Service Providers (CSPs) with the goal of sharing resources and data. In providing a larger-scale and higher performance infrastructure, federation enables on-demand provisioning of complex services. In this paper we convey our contribution to this area by outlining our proposed methodology that develops a robust collaborative intrusion detection methodology in a federated Cloud environment. For collaborative intrusion detection we use the Dempster-Shafer theory of evidence to fuse the beliefs provided by the monitoring entities, taking the final decision regarding a possible attack. Protecting the federated Cloud against cyber attacks is a vital concern, due to the potential for significant economic consequences
    • …
    corecore