2,146 research outputs found

    Complexity-Aware Scheduling for an LDPC Encoded C-RAN Uplink

    Full text link
    Centralized Radio Access Network (C-RAN) is a new paradigm for wireless networks that centralizes the signal processing in a computing cloud, allowing commodity computational resources to be pooled. While C-RAN improves utilization and efficiency, the computational load occasionally exceeds the available resources, creating a computational outage. This paper provides a mathematical characterization of the computational outage probability for low-density parity check (LDPC) codes, a common class of error-correcting codes. For tractability, a binary erasures channel is assumed. Using the concept of density evolution, the computational demand is determined for a given ensemble of codes as a function of the erasure probability. The analysis reveals a trade-off: aggressively signaling at a high rate stresses the computing pool, while conservatively backing-off the rate can avoid computational outages. Motivated by this trade-off, an effective computationally aware scheduling algorithm is developed that balances demands for high throughput and low outage rates.Comment: Conference on Information Sciences and Systems (CISS) 2017, to appea

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Near-capacity iterative decoding of binary self-concatenated codes using soft decision demapping and 3-D EXIT charts

    No full text
    In this paper 3-D Extrinsic Information Transfer (EXIT) charts are used to design binary Self-Concatenated Convolutional Codes employing Iterative Decoding (SECCC-ID), exchanging extrinsic information with the soft-decision demapper to approach the channel capacity. Recursive Systematic Convolutional (RSC) codes are selected as constituent codes, an interleaver is used for randomising the extrinsic information exchange of the constituent codes, while a puncturer helps to increase the achievable bandwidth efficiency. The convergence behaviour of the decoder is analysed with the aid of bit-based 3-D EXIT charts, for accurately calculating the operating EbN0 threshold, especially when SP based soft demapper is employed. Finally, we propose an attractive system configuration, which is capable of operating within about 1 dB from the channel capacity
    corecore