1,355 research outputs found

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Collaborative Artificial Intelligence Algorithms for Medical Imaging Applications

    Get PDF
    In this dissertation, we propose novel machine learning algorithms for high-risk medical imaging applications. Specifically, we tackle current challenges in radiology screening process and introduce cutting-edge methods for image-based diagnosis, detection and segmentation. We incorporate expert knowledge through eye-tracking, making the whole process human-centered. This dissertation contributes to machine learning, computer vision, and medical imaging research by: 1) introducing a mathematical formulation of radiologists level of attention, and sparsifying their gaze data for a better extraction and comparison of search patterns. 2) proposing novel, local and global, image analysis algorithms. Imaging based diagnosis and pattern analysis are high-risk Artificial Intelligence applications. A standard radiology screening procedure includes detection, diagnosis and measurement (often done with segmentation) of abnormalities. We hypothesize that having a true collaboration is essential for a better control mechanism, in such applications. In this regard, we propose to form a collaboration medium between radiologists and machine learning algorithms through eye-tracking. Further, we build a generic platform consisting of novel machine learning algorithms for each of these tasks. Our collaborative algorithm utilizes eye tracking and includes an attention model and gaze-pattern analysis, based on data clustering and graph sparsification. Then, we present a semi-supervised multi-task network for local analysis of image in radiologists\u27 ROIs, extracted in the previous step. To address missing tumors and analyze regions that are completely missed by radiologists during screening, we introduce a detection framework, S4ND: Single Shot Single Scale Lung Nodule Detection. Our proposed detection algorithm is specifically designed to handle tiny abnormalities in lungs, which are easy to miss by radiologists. Finally, we introduce a novel projective adversarial framework, PAN: Projective Adversarial Network for Medical Image Segmentation, for segmenting complex 3D structures/organs, which can be beneficial in the screening process by guiding radiologists search areas through segmentation of desired structure/organ

    High-Level Interpretation of Urban Road Maps Fusing Deep Learning-Based Pixelwise Scene Segmentation and Digital Navigation Maps

    Get PDF
    This paper addresses the problem of high-level road modeling for urban environments. Current approaches are based on geometric models that fit well to the road shape for narrow roads. However, urban environments are more complex and those models are not suitable for inner city intersections or other urban situations. The approach presented in this paper generates a model based on the information provided by a digital navigation map and a vision-based sensing module. On the one hand, the digital map includes data about the road type (residential, highway, intersection, etc.), road shape, number of lanes, and other context information such as vegetation areas, parking slots, and railways. On the other hand, the sensing module provides a pixelwise segmentation of the road using a ResNet-101 CNN with random data augmentation, as well as other hand-crafted features such as curbs, road markings, and vegetation. The high-level interpretation module is designed to learn the best set of parameters of a function that maps all the available features to the actual parametric model of the urban road, using a weighted F-score as a cost function to be optimized. We show that the presented approach eases the maintenance of digital maps using crowd-sourcing, due to the small number of data to send, and adds important context information to traditional road detection systems
    corecore