292,569 research outputs found

    Harnessing Intellectual Resources in a Collaborative Context to Create Value

    Get PDF
    The value of electronic collaboration has arisen as successful organisations recognize that they need to convert their intellectual resources into customized services. The shift from personal computing to interpersonal or collaborative computing has given rise to ways of working that may bring about better and more effective use of intellectual resources. Current efforts in managing knowledge have concentrated on producing; sharing and storing knowledge while business problems require the combined use of these intellectual resources to enable organisations to provide innovative and customized services. In this chapter the collaborative context is developed using a model for electronic collaboration through the use of which organisations may mobilse collaborative technologies and intellectual resources towards achieving joint effect.electronic collaboration;value creation;collaborative computing;knowledge management and intellectual resources

    Trust dynamics for collaborative global computing

    Get PDF
    Recent advances in networking technology have increased the potential for dynamic enterprise collaborations between an open set of entities on a global scale. The security of these collaborations is a major concern, and requires novel approaches suited to this new environment to be developed. Trust management appears to be a promising approach. Due to the dynamic nature of these collaborations,dynamism in the formation, evolution and exploitation of trust is essential. In this paper we explore the properties of trust dynamics in this context. Trust is formed and evolves according to personal experience and recommendations. The properties of trust dynamics are expressed through a formal model of trust. Specific examples, based on an e-purse application scenario are used to demonstrate these properties

    Models in the Cloud: Exploring Next Generation Environmental Software Systems

    Get PDF
    There is growing interest in the application of the latest trends in computing and data science methods to improve environmental science. However we found the penetration of best practice from computing domains such as software engineering and cloud computing into supporting every day environmental science to be poor. We take from this work a real need to re-evaluate the complexity of software tools and bring these to the right level of abstraction for environmental scientists to be able to leverage the latest developments in computing. In the Models in the Cloud project, we look at the role of model driven engineering, software frameworks and cloud computing in achieving this abstraction. As a case study we deployed a complex weather model to the cloud and developed a collaborative notebook interface for orchestrating the deployment and analysis of results. We navigate relatively poor support for complex high performance computing in the cloud to develop abstractions from complexity in cloud deployment and model configuration. We found great potential in cloud computing to transform science by enabling models to leverage elastic, flexible computing infrastructure and support new ways to deliver collaborative and open science

    Leveraging Edge Computing through Collaborative Machine Learning

    Get PDF
    The Internet of Things (IoT) offers the ability to analyze and predict our surroundings through sensor networks at the network edge. To facilitate this predictive functionality, Edge Computing (EC) applications are developed by considering: power consumption, network lifetime and quality of context inference. Humongous contextual data from sensors provide data scientists better knowledge extraction, albeit coming at the expense of holistic data transfer that threatens the network feasibility and lifetime. To cope with this, collaborative machine learning is applied to EC devices to (i) extract the statistical relationships and (ii) construct regression (predictive) models to maximize communication efficiency. In this paper, we propose a learning methodology that improves the prediction accuracy by quantizing the input space and leveraging the local knowledge of the EC devices

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    A FUNCTIONAL SKETCH FOR RESOURCES MANAGEMENT IN COLLABORATIVE SYSTEMS FOR BUSINESS

    Get PDF
    This paper presents a functional design sketch for the resource management module of a highly scalable collaborative system. Small and medium enterprises require such tools in order to benefit from and develop innovative business ideas and technologies. As computing power is a modern increasing demand and no easy and cheap solutions are defined, especially small companies or emerging business projects abide a more accessible alternative. Our work targets to settle a model for how P2P architecture can be used as infrastructure for a collaborative system that delivers resource access services. We are focused on finding a workable collaborative strategy between peers so that the system offers a cheap, trustable and quality service. Thus, in this phase we are not concerned about solutions for a specific type of task to be executed by peers, but only considering CPU power as resource. This work concerns the resource management module as a part of a larger project in which we aim to build a collaborative system for businesses with important resource demandsresource management, p2p, open-systems, service oriented computing, collaborative systems

    The Informatics of the Equity Markets - A Collaborative Approach

    Get PDF
    This paper aims to provide a high-level overview upon the information technology that supports the electronic transactions performed on the equity markets. It is meant to offer a succinct introduction to the various technologies tailored to tackle the data transfer between the participants on an equity market, the architectural approaches regarding trading system design, and the communication in a collaborative distributed computing environment. Our intention here is not to provide solutions, or to propose definitive designs, merely to scratch the surface of this vast domain, and open the path for subsequent researches.securities exchange, stock order flow, trading system architecture, distributed computing, middleware, collaborative system, order-matching algorithm
    • 

    corecore