1,684 research outputs found

    Problem-based learning: enhancing students learning of building information modelling

    Get PDF
    Building Information Modelling (BIM) is an innovative collaborative process underpinned by digital technologies introduced to improve project performance in the Architecture, Engineering and Construction (AEC) industry. Growth in industry demands has necessitated BIM inclusion into the Higher Education (HE) curricula as both a pedagogic and practical objective to prepare and develop aspiring Built Environment (BE) professionals with the required competence for contemporary practice. However, comprehension of BIM concepts and developing the skill set required for its application can be overwhelming for students and crucial to mitigating this challenge is the adoption of appropriate learner-centred strategies. Problem-based Learning (PBL) is becoming a widespread strategy to address such concern. This paper evaluates the impact of PBL strategy on students accelerated learning of BIM based on a case study of an undergraduate BIM module. Findings from the study show PBL benefits on students’ knowledge acquisition (cognitive and affective) of BIM concept and development of transferable skills (academic and disciplinary) equipping them with capabilities to become BIM competent and workplace ready for the AEC industry

    Supporting the development and delivery of the Level 3 DEC! learning programme : enhancing the pathway to higher education and employment through local HEI and School partnership

    Get PDF
    This report outlines the key findings and benefits from this BIM4Education project, and the partnership between St. Ambrose Barlow RC High School, The University of Salford, and Class Of Your Own. The purpose of the report is to document evidence of the value for all contributors to the DEC curriculum, i.e. pupils, teaching staff, schools, and HE partners

    Technology and skills in the construction industry

    Get PDF

    CONSTRUCTION EDUCATION REQUIREMENTS FOR ACHIEVING LEVEL 2 AND 3 BIM

    Get PDF
    The Architecture Engineering Construction (AEC) Industry is well noted for its fragmented nature, leading to several flaws in communication and information processing, which have led to a proliferation of adversarial relationships amongst project participants, thereby affecting the integrity of design information throughout the project life cycle. Likewise, Construction Education is bedevilled by multitudinous issues due to its practice-based, interdisciplinary nature of the industry, its professional and institutional history, and its evolving context and composition. These challenges have influenced the purpose of construction as well as the requirements or strategies needed to achieve it. The purpose of this paper is to examine the nature of Construction Education and learning requirements for successful training and implementation of Level 2 (with the aid of a process map) and also of Level 3, to meeting the ever-changing nature of the AEC industry. This process map seeks to identify the educational requirements for existing industry practitioners and for fresh graduates entering into the industry. In order to achieve this aim, a case study methodology was adopted using semi-structured interviews with BIM experts in purposively selected organisations in the UK, which were further analysed using single case narrative and cross-case synthesis techniques. The BIM sub-processes at each project phase of the construction process were extracted from the interviews conducted. Then the process map linking all the BIM activities in the project was developed. In conclusion, the process map formalises the knowledge and skills set required to successfully implement Level 2 and 3 BIM, facilitating project collaboration, communication flow and agreement amongst project participants on construction processes throughout the project lifecycle. The finding of this research are highly aligned with the seminal literature which argued that new skills required for the creation and management of a BIM model fall into the three categories of technological tools, organisational processes, and project team roles and responsibilities, and that these three skill sets contribute to the success of the entire BIM project and adoption in any organisation

    Teaching BIM: a comparison between actual and future perspectives

    Get PDF
    Building Information Modeling BIM in AEC education is a promising teaching strategy. The aim of the European project BENEDICT is to analyze teaching approaches to Building Information Modeling (BIM) for the construction industry. The goal of this research is therefore to perform an exhaustive analysis on the methods of transmission of BIM awareness and education in some American universities with the aim of comparing them with the BENEDICT approach developed in Italian, Estonian and Finnish Universities. Therefore, a teaching plan that aims to standardize and unify relevant teaching programs, tools and methods is developed, tackling existing skill gaps and mismatches between academia and industry

    Scientometric analysis of BIM-based research in construction engineering and management

    Get PDF
    The purpose of this paper is to summarize the latest research of BIM adoption in construction engineering and management (CEM) and propose research directions for future scholarly work. During the recent decade, building information modeling (BIM) has gained increasing applications and research interest in the construction industry. Although there have been review-based studies that summarized BIM-based research in the overall architecture, engineering and construction (AEC) area, there is limited review that evaluates the current stage of BIM-based research specifically in the CEM sub-area. Design/methodology/approach CEM falls into the scope of AEC. It involves construction-related tasks, activities and processes (e.g. scheduling and cost estimates), issues (e.g. constructability), as well as human factors (e.g. collaboration). This study adopted a holistic literature review approach that incorporates bibliometric search and scientometric analysis. A total of 276 articles related to BIM applied in CEM were selected from Scopus as the literature sample for the scientometric analysis. Findings Some key CEM research areas (e.g. CEM pedagogy, integrated project delivery, lean and off-site construction) were identified and evaluated. Research trends in these areas were identified, and analyses were carried out with regard to how they could be integrated with BIM. For example, BIM, as a data repository for ACE facilities, has substantial potential to be integrated with a variety of other digital technologies, project delivery methods and innovative construction techniques throughout the whole process of CEM. Practical implications As BIM is one of the key technologies and digital platforms to improve the construction productivity and collaboration, it is important for industry practitioners to be updated of the latest movement and progress of the academic research. The industry, academics and governmental authorities should work with joint effort to fill the gap by first recognizing the current needs, limitations and trends of applying BIM in the construction industry. For example, it needs more understanding about how to address technical interoperability issues and how to introduce the integrated design and construction delivery approach for BIM implementation under the UK BIM Level 2/3 framework. This study contributed to the body of knowledge in BIM by proposing a framework leading to research directions including the differences of BIM effects between design-bid-build and other fast-track project delivery methods; the integration of BIM with off-site construction; and BIM pedagogy in CEM. It also addressed the need to investigate the similarities and differences between academia and industry toward perceiving the movement of BIM in construction field work

    Teaching BIM in a multidisciplinary department

    Get PDF
    corecore