2,909 research outputs found

    Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives

    Full text link
    Collectiveness is an important property of many systems--both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals, or even to produce intelligent collective behaviour out of not-so-intelligent individuals. Indeed, collective intelligence, namely the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems--motivated by recent techno-scientific trends like the Internet of Things, swarm robotics, and crowd computing, just to name a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognised research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this paper considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.Comment: This is the author's final version of the article, accepted for publication in the Artificial Life journal. Data: 34 pages, 2 figure

    Cyber-physical systems in manufacturing: Future trends and research priorities

    Get PDF
    In the last decades, the manufacturing ecosystem witnessed an unprecedented evolution of disruptive technologies forging new opportunities for manufacturing companies to cope the ever-growing market pressure. Moreover, the race to create value for the customers has been hindered by several issues that both small and large companies have been facing, such as shorter product life cycles, rapid time-to-market, product complexity, cost pressure, increased international competition, etc. In this scenario, ICT represent a crucial enabler for preserving competitiveness and fostering industry innovation. In particular, among these technologies, Cyber-Physical Systems (CPS) is growing an ever-high interest of industry stakeholders, researchers, practitioners and policy makers as they are considered the key technology that will transform manufacturing industry to the next generation. Indeed, CPS is a breakthrough research area for ICT in manufacturing and represents the cornerstone for achieving the EU2020 "smart everywhere" vision. At this early development phase, there is the urgent need to set the ground for future research streams, create a common understanding and consensus, define viable migration paths and support standards definition. This paper describes the identified research challenges and the future trends that will drive to the adoption of CPS in manufacturing. The main evidences on researches challenges expected for CPS in manufacturing are outlined by the authors that have been involved in the sCorPiuS project 'European Roadmap for Cyber- Physical Systems in Manufacturing', promoted by the European Commission to define a roadmap for future CPS in manufacturing adoption research agenda

    The Digital in Architecture: Then, Now and In the Future

    Get PDF
    Authored by architecture theorist Mollie Claypool, it’s your one-stop-shop for the history of digital thinking in architecture. From debates around parametric design to the emergence of collaboration, the report condenses the interplay between digital innovation and architecture into one, tangible piece to reference

    Artificial Intelligence for the Management of Servitization 5.0

    Get PDF
    Purpose-The sale of physical products has been manufacturing companies' main revenue source. A trend is known as servitization for earning revenue comes from services. With the convergence of servitization and digitization, many manufacturing organizations are undergoing digital servitization. In parallel, the digitization of industry is pushing new technological solutions to the top of the business agenda. Artificial intelligence can play a substantial role in this digital business transformation. This evolution is referred to in this paper as Servitization 5.0 and requires substantial changes. Aim-This paper explores the applications of artificial intelligence to Servitization 5.0 strategies and its role, particularly in changing organizations to EverythiA.I.ng as a Service. The paper underlines the contribution that A.I. can provide in moving to a human-centric, sustainable, and resilient servitization. Method used-The basis of the work is a literature review supported by information collected from business case studies by the authors. A follow-up study defined the models. The validity of the model was tested by collecting ten experts' opinions who currently work within servitization contracts sessions. Findings-For manufacturing companies, selling services requires completely different business models. In this situation, it is essential to consider advanced solutions to support these new business models. Artificial Intelligence can make it possible. On the inter-organizational side, empirical evidence also points to the support of A.I. in collaborating with ecosystems to support sustainability and resilience, as requested by Industry 5.0. Original value-Regarding theoretical implications, this paper contributes to interdisciplinary research in corporate marketing and operational servitization. It is part of the growing literature that deals with the applications of artificial intelligence-based solutions in different areas of organizational management. The approach is interesting because it highlights that digital solutions require an integrated business model approach. It is necessary to implement the technological platform with appropriate processes, people, and partners (the four Ps). The outcome of this study can be generalized for industries in high-value manufacturing. Implications-As implications for management, this paper defines how to organize the structure and support for Servitization 5.0 and how to work with the external business environment to support sustainability

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples

    Digital Twins for Industry 4.0 in the 6G Era

    Full text link
    Having the Fifth Generation (5G) mobile communication system recently rolled out in many countries, the wireless community is now setting its eyes on the next era of Sixth Generation (6G). Inheriting from 5G its focus on industrial use cases, 6G is envisaged to become the infrastructural backbone of future intelligent industry. Especially, a combination of 6G and the emerging technologies of Digital Twins (DT) will give impetus to the next evolution of Industry 4.0 (I4.0) systems. This article provides a survey in the research area of 6G-empowered industrial DT system. With a novel vision of 6G industrial DT ecosystem, this survey discusses the ambitions and potential applications of industrial DT in the 6G era, identifying the emerging challenges as well as the key enabling technologies. The introduced ecosystem is supposed to bridge the gaps between humans, machines, and the data infrastructure, and therewith enable numerous novel application scenarios.Comment: Accepted for publication in IEEE Open Journal of Vehicular Technolog
    • …
    corecore