363 research outputs found

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    ROBUST LOW-RANK MATRIX FACTORIZATION WITH MISSING DATA BY MINIMIZING L1 LOSS APPLIED TO COLLABORATIVE FILTERING

    Get PDF
    In this age of information overload and plethora of choices, people increasingly rely on automatic recommender systems to tell them what suits their needs. A very effective approach for creating recommender systems is collaborative filtering, which is the task of predicting the preference/rating that a user would assign to an item based on preference data of that user and preference data of other users. One way to conduct collaborative filtering is through dimensionality reduction. The underlying concept of the approach lies in the belief that there are only a few features (reduced dimensions) that influence the user’s choice. In this paper we use low rank matrix factorization for dimensionality reduction. Singular Value Decomposition (SVD), which is minimizing the L2 norm is the most popular technique to perform matrix factorization. However, in most recommendation system data sets, often the users only rate a small amount of items, which creates missing data. As a result SVD fails. In recent years L1 norm has gained much importance and popularity because it is robust to outliers and missing data. In this thesis we use alternate convex optimization to perform L1 norm minimization to solve the matrix factorization problem and apply it to collaborative filtering. We also review some of the major challenges that collaborative filtering faces today and some of the other techniques used. Additionally, this thesis discusses the importance and future of collaborative filtering in medical applications that concerns the database of patient history (prescriptions/symptoms) and how it can be used as a predictive task for the future of the patient
    • …
    corecore