134 research outputs found

    Coinduction up to in a fibrational setting

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modelled as coalgebras. By tuning the parameters of our framework, we obtain novel techniques for unary predicates and nominal automata, a variant of the GSOS rule format for similarity, and a new categorical treatment of weak bisimilarity

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page

    Coinduction in control of partially observed discrete-event systems

    Get PDF
    Coalgebra and coinduction provide new results and insights for the supervisory control of discrete-event systems (DES) with partial observations. In the case of full observations, coinduction has been used to define a new operation on languages called supervised product, which represents the language of the closed-loop system. The first language acts as a supervisor and the second as an open-loop system (plant). We show first that the supervised product is equal to the infimal controllable superlanguage of the supervisor's (specification) language with respect to the plant language. This can be generalized to the partial observation case, where the supervised product is shown to be equal to the infimal controllable and observable superlanguage. There are two different control laws for partially observed DES, that give the same closed-loop system if the specification is observable: permissive and antipermissive. A variation on the supervised product is presented, which corresponds to the control policy with the issue of of observability separated from the issue of controllability. It is shown to be equal to the infimal observable superlanguage. Similar idea for the antipermissive control law leads to a maximal observable sublanguage that contains the supremal normal sublanguage. We present an algorithm for its computation

    Coalgebraic Characterizations of Automata-Theoretic Classes

    Get PDF

    The Power of Convex Algebras

    Get PDF
    Probabilistic automata (PA) combine probability and nondeterminism. They can be given different semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution bisimilarity. The latter is based on the view of PA as transformers of probability distributions, also called belief states, and promotes distributions to first-class citizens. We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-state transformer from a PA. To do so, we make explicit the convex algebraic structure present in PA and identify belief-state transformers as transition systems with state space that carries a convex algebra. As a consequence of our abstract approach, we can give a sound proof technique which we call bisimulation up-to convex hull.Comment: Full (extended) version of a CONCUR 2017 paper, to be submitted to LMC

    Enhanced Coalgebraic Bisimulation

    Get PDF
    International audienceWe present a systematic study of bisimulation-up-to techniques for coalgebras. This enhances the bisimulation proof method for a large class of state based systems, including labelled transition systems but also stream systems and weighted automata. Our approach allows for compositional reasoning about the soundness of enhancements. Applications include the soundness of bisimulation up to bisimilarity, up to equivalence and up to congruence. All in all, this gives a powerful and modular framework for simplified coinductive proofs of equivalence
    • …
    corecore