10,088 research outputs found

    Genetic modifiers of cognitive maintenance among older adults.

    Get PDF
    ObjectiveIdentify genetic factors associated with cognitive maintenance in late life and assess their association with gray matter (GM) volume in brain networks affected in aging.MethodsWe conducted a genome-wide association study of ∼2.4 M markers to identify modifiers of cognitive trajectories in Caucasian participants (N = 7,328) from two population-based cohorts of non-demented elderly. Standardized measures of global cognitive function (z-scores) over 10 and 6 years were calculated among participants and mixed model regression was used to determine subject-specific cognitive slopes. "Cognitive maintenance" was defined as a change in slope of ≥ 0 and was compared with all cognitive decliners (slope < 0). In an independent cohort of cognitively normal older Caucasians adults (N = 122), top association findings were then used to create genetic scores to assess whether carrying more cognitive maintenance alleles was associated with greater GM volume in specific brain networks using voxel-based morphometry.ResultsThe most significant association was on chromosome 11 (rs7109806, P = 7.8 × 10(-8)) near RIC3. RIC3 modulates activity of α7 nicotinic acetylcholine receptors, which have been implicated in synaptic plasticity and beta-amyloid binding. In the neuroimaging cohort, carrying more cognitive maintenance alleles was associated with greater volume in the right executive control network (RECN; PFWE  = 0.01).ConclusionsThese findings suggest that there may be genetic loci that promote healthy cognitive aging and that they may do so by conferring robustness to GM in the RECN. Future work is required to validate top candidate genes such as RIC3 for involvement in cognitive maintenance

    Proceedings of the International Workshop on Enterprise Interoperability (IWEI 2008)

    Get PDF

    Machine learning classifiers: Evaluation of the performance in online reviews

    Get PDF
    This paper aims to evaluate the performance of the machine learning classifiers and identify the most suitable classifier for classifying sentiment value. The term “sentiment value” in this study is referring to the polarity (positive, negative or neutral) of the text. This work applies machine learning classifiers from WEKA (Waikato Environment for Knowledge Analysis) toolkit in order to perform their evaluation. WEKA toolkit is a great set of tools for data mining and classification. The performance of the machine learning classifiers was measured by examining overall accuracy, recall, precision, kappa statistic and applying few visualization techniques. Finally, the analysis is applied to find the most suitable classifier for classifying sentiment value. Results show that two classifiers from Rules and Trees categories of classifiers perform equally best comparing to the other classifiers from categories, such as Bayes, Functions, Lazy and Meta. This paper explores the performance of machine learning classifiers in sentiment value classification in the online reviews. Data used is never been used before to explore the performance of machine learning classifiers

    Multi-scale Discriminant Saliency with Wavelet-based Hidden Markov Tree Modelling

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between centre and surround classes. Discriminant power of features for the classification is measured as mutual information between distributions of image features and corresponding classes . As the estimated discrepancy very much depends on considered scale level, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden Markov Tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, a saliency value for each square block at each scale level is computed with discriminant power principle. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) method against the well-know information based approach AIM on its released image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.Comment: arXiv admin note: substantial text overlap with arXiv:1301.396
    corecore