4,375 research outputs found

    Flipping quantum coins

    Get PDF
    Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit in order to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which restores complete or nearly complete bias in previous protocols. We report herein on the first implementation of a quantum coin-flipping protocol that is impervious to loss. Moreover, in the presence of unavoidable experimental noise, we propose to use this protocol sequentially to implement many coin flips, which guarantees that a cheater unwillingly reveals asymptotically, through an increased error rate, how many outcomes have been fixed. Hence, we demonstrate for the first time the possibility of flipping coins in a realistic setting. Flipping quantum coins thereby joins quantum key distribution as one of the few currently practical applications of quantum communication. We anticipate our findings to be useful for various cryptographic protocols and other applications, such as an online casino, in which a possibly unlimited number of coin flips has to be performed and where each player is free to decide at any time whether to continue playing or not.Comment: 17 pages, 3 figure

    Fair Loss-Tolerant Quantum Coin Flipping

    Full text link
    Coin flipping is a cryptographic primitive in which two spatially separated players, who in principle do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the players or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonest players can produce. However, those protocols would be very difficult to implement in practice because they are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and measurement apparatus. In this paper, we introduce a novel quantum protocol and we prove that it is completely impervious to loss. The protocol is fair in the sense that either player has the same probability of success in cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies for both players.Comment: 12 pages, 1 figure; various minor typos corrected in version

    Oblivious Transfer based on Key Exchange

    Full text link
    Key-exchange protocols have been overlooked as a possible means for implementing oblivious transfer (OT). In this paper we present a protocol for mutual exchange of secrets, 1-out-of-2 OT and coin flipping similar to Diffie-Hellman protocol using the idea of obliviously exchanging encryption keys. Since, Diffie-Hellman scheme is widely used, our protocol may provide a useful alternative to the conventional methods for implementation of oblivious transfer and a useful primitive in building larger cryptographic schemes.Comment: 10 page
    • …
    corecore