57,047 research outputs found

    COHESION, CONSENSUS AND EXTREME INFORMATION IN OPINION DYNAMICS

    Get PDF
    Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analysed. Its main features are the inclusion of disagreement and possibility of modulating external information/media effects, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and media extremism, and the effect of using multiple external sources of information that can influence the system. Final consensus, especially with the external message, depends highly on these factors, as numerical simulations show. When no external input is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one external source of information is present, consensus can be obtained, in general, only when this is extremely neutral, i.e., there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low exposure to the external message. On the contrary, when multiple external sources are allowed, consensus can emerge with one of them even when this is not extremely neutral, i.e., it carries a strong message, for a large range of initial conditions

    Opinion Polarization by Learning from Social Feedback

    Full text link
    We explore a new mechanism to explain polarization phenomena in opinion dynamics in which agents evaluate alternative views on the basis of the social feedback obtained on expressing them. High support of the favored opinion in the social environment, is treated as a positive feedback which reinforces the value associated to this opinion. In connected networks of sufficiently high modularity, different groups of agents can form strong convictions of competing opinions. Linking the social feedback process to standard equilibrium concepts we analytically characterize sufficient conditions for the stability of bi-polarization. While previous models have emphasized the polarization effects of deliberative argument-based communication, our model highlights an affective experience-based route to polarization, without assumptions about negative influence or bounded confidence.Comment: Presented at the Social Simulation Conference (Dublin 2017

    Response Functions to Critical Shocks in Social Sciences: An Empirical and Numerical Study

    Full text link
    We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a policy, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing ``cracks'' because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases foreshadows a bifurcation. We complement our empirical work with numerical simulations of the response function (``damage spreading'') to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Opinion dynamics with disagreement and modulated information

    Get PDF
    Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring relevance in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals' opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions' overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices

    How does leadership support the activity of communities of practice ?

    Get PDF
    the purpose of this paper is to present leadership as an important mechanism underlying the coordination and the cohesion of communities of practice. More precisely, it will be shown that an important factor conditioning the coordination and the cohesion of a community rests on the leaders’ capacity to influence individual behaviors. This capacity of influence is grounded on the high degrees of reputation and trust they enjoy within the community. However, coordination of individual behaviors is not ensured by the mere existence of leadership. A simulation model points out the conditions under which leadership forms an efficient coordinating device.communities of practice, leadership, reputation, exit, loyalty, coordination, social simulation.

    Individualization as driving force of clustering phenomena in humans

    Get PDF
    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution of the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct simulation experiments to demonstrate that with this kind of noise, a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
    • …
    corecore