2,492 research outputs found

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Conditional vorticity budget of coherent and incoherent flow contributions in fully developed homogeneous isotropic turbulence

    Full text link
    We investigate the conditional vorticity budget of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. The Coherent Vorticity Extraction based on orthogonal wavelets allows to decompose the vorticity field into coherent and incoherent contributions, of which the latter are noise-like. The impact of the vortex structures observed in fully developed turbulence on statistical balance equations is quantified considering the conditional vorticity budget. The connection between the basic structures present in the flow and their statistical implications is thereby assessed. The results are compared to those obtained for large- and small-scale contributions using a Fourier decomposition, which reveals pronounced differences

    The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics

    Full text link
    Invariance properties of physical systems govern their behavior: energy conservation in turbulence drives a wide distribution of energy among modes, observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of helicity conservation (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, with solid body rotation, significant differences emerge between helical and non-helical flows. We first outline several results, like the energy and helicity spectral distribution and the breaking of strict universality for the individual spectra. Using massive numerical simulations, we then show that small-scale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami-core vortices (BCV) that are laminar helical vertical updrafts. These results point to the discovery of a small parameter besides the Rossby number; this could relate the problem of rotating helical turbulence to that of critical phenomena, through renormalization group and weak turbulence theory. This parameter can be associated with the adimensionalized ratio of the energy to helicity flux to small scales, the three-dimensional energy cascade being weak and self-similar

    Multiscale Analysis and Computation for the Three-Dimensional Incompressible Navier–Stokes Equations

    Get PDF
    In this paper, we perform a systematic multiscale analysis for the three-dimensional incompressible Navier–Stokes equations with multiscale initial data. There are two main ingredients in our multiscale method. The first one is that we reparameterize the initial data in the Fourier space into a formal two-scale structure. The second one is the use of a nested multiscale expansion together with a multiscale phase function to characterize the propagation of the small-scale solution dynamically. By using these two techniques and performing a systematic multiscale analysis, we derive a multiscale model which couples the dynamics of the small-scale subgrid problem to the large-scale solution without a closure assumption or unknown parameters. Furthermore, we propose an adaptive multiscale computational method which has a complexity comparable to a dynamic Smagorinsky model. We demonstrate the accuracy of the multiscale model by comparing with direct numerical simulations for both two- and three-dimensional problems. In the two-dimensional case we consider decaying turbulence, while in the three-dimensional case we consider forced turbulence. Our numerical results show that our multiscale model not only captures the energy spectrum very accurately, it can also reproduce some of the important statistical properties that have been observed in experimental studies for fully developed turbulent flows

    Decaying grid turbulence in a rotating stratified fluid

    Get PDF
    Rotating grid turbulence experiments have been carried out in a stably stratified fluid for relatively large Reynolds numbers (mesh Reynolds numbers up to 18000). Under the combined effects of rotation and stratification the flow degenerates into quasihorizontal motions. This regime is investigated using a scanning imaging velocimetry technique which provides time-resolved velocity fields in a volume. The most obvious effect of rotation is the inhibition of the kinetic energy decay, in agreement with the quasi-geostrophic model which predicts the absence of a direct energy cascade, as found in two-dimensional turbulence. In the regime of small Froude and Rossby numbers, the dynamics is found to be non-dissipative and associated with a symmetric and highly intermittent vertical vorticity field, that displays k(h)(-3) energy spectra. For higher Rossby numbers, fundamental differences with the quasi-geostrophic model are found. A significant decay of kinetic energy, which does not depend on the stratification, is observed. Moreover, in this regime, although both cyclones and anticyclones are initially produced, the intense vortices are only cyclones. For late times the flow consists of an assembly of coherent interacting Structures. Under the influence of both rotation and stratification, they take the form of lens-like eddies with aspect ratio proportional to f/N

    The Lundgren-Monin-Novikov Hierarchy: Kinetic Equations for Turbulence

    Get PDF
    We present an overview of recent works on the statistical description of turbulent flows in terms of probability density functions (PDFs) in the framework of the Lundgren-Monin-Novikov (LMN) hierarchy. Within this framework, evolution equations for the PDFs are derived from the basic equations of fluid motion. The closure problem arises either in terms of a coupling to multi-point PDFs or in terms of conditional averages entering the evolution equations as unknown functions. We mainly focus on the latter case and use data from direct numerical simulations (DNS) to specify the unclosed terms. Apart from giving an introduction into the basic analytical techniques, applications to two-dimensional vorticity statistics, to the single-point velocity and vorticity statistics of three-dimensional turbulence, to the temperature statistics of Rayleigh-B\'enard convection and to Burgers turbulence are discussed.Comment: Accepted for publication in C. R. Acad. Sc
    corecore