23 research outputs found

    Envelopes of conditional probabilities extending a strategy and a prior probability

    Full text link
    Any strategy and prior probability together are a coherent conditional probability that can be extended, generally not in a unique way, to a full conditional probability. The corresponding class of extensions is studied and a closed form expression for its envelopes is provided. Then a topological characterization of the subclasses of extensions satisfying the further properties of full disintegrability and full strong conglomerability is given and their envelopes are studied.Comment: 2

    The Set Structure of Precision: Coherent Probabilities on Pre-Dynkin-Systems

    Full text link
    In literature on imprecise probability little attention is paid to the fact that imprecise probabilities are precise on some events. We call these sets system of precision. We show that, under mild assumptions, the system of precision of a lower and upper probability form a so-called (pre-)Dynkin-system. Interestingly, there are several settings, ranging from machine learning on partial data over frequential probability theory to quantum probability theory and decision making under uncertainty, in which a priori the probabilities are only desired to be precise on a specific underlying set system. At the core of all of these settings lies the observation that precise beliefs, probabilities or frequencies on two events do not necessarily imply this precision to hold for the intersection of those events. Here, (pre-)Dynkin-systems have been adopted as systems of precision, too. We show that, under extendability conditions, those pre-Dynkin-systems equipped with probabilities can be embedded into algebras of sets. Surprisingly, the extendability conditions elaborated in a strand of work in quantum physics are equivalent to coherence in the sense of Walley (1991, Statistical reasoning with imprecise probabilities, p. 84). Thus, literature on probabilities on pre-Dynkin-systems gets linked to the literature on imprecise probability. Finally, we spell out a lattice duality which rigorously relates the system of precision to credal sets of probabilities. In particular, we provide a hitherto undescribed, parametrized family of coherent imprecise probabilities

    Data-Based Decisions under Complex Uncertainty

    Get PDF
    Decision theory is, in particular in economics, medical expert systems and statistics, an important tool for determining optimal decisions under uncertainty. In view of applications in statistics, the present book is concerned with decision problems which are explicitly data-based. Since the arising uncertainties are often too complex to be described by classical precise probability assessments, concepts of imprecise probabilities (coherent lower previsions, F-probabilities) are applied. Due to the present state of research, some basic groundwork has to be done: Firstly, topological properties of different concepts of imprecise probabilities are investigated. In particular, the concept of coherent lower previsions appears to have advantageous properties for applications in decision theory. Secondly, several decision theoretic tools are developed for imprecise probabilities. These tools are mainly based on concepts developed by L. Le Cam and enable, for example, a definition of sufficiency in case of imprecise probabilities for the first time. Building on that, the article [A. Buja, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 65 (1984) 367-384] is reinvestigated in the only recently available framework of imprecise probabilities. This leads to a generalization of results within the Huber-Strassen theory concerning least favorable pairs or models. Results obtained by these investigations can also be applied afterwards in order to justify the use of the method of natural extension, which is fundamental within the theory of imprecise probabilities, in data-based decision problems. It is shown by means of the theory of vector lattices that applying the method of natural extension in decision problems does not affect the optimality of decisions. However, it is also shown that, in general, the method of natural extension suffers from a severe instability. The book closes with an application in statistics in which a minimum distance estimator is developed for imprecise probabilities. After an investigation concerning its asymptotic properties, an algorithm for calculating the estimator is given which is based on linear programming. This algorithm has led to an implementation of the estimator in the programming language R which is publicly available as R package "imprProbEst". The applicability of the estimator (even for large sample sizes) is demonstrated in a simulation study

    Learning from samples using coherent lower previsions

    Get PDF
    Het hoofdonderwerp van dit werk is het afleiden, voorstellen en bestuderen van voorspellende en parametrische gevolgtrekkingsmodellen die gebaseerd zijn op de theorie van coherente onderprevisies. Een belangrijk nevenonderwerp is het vinden en bespreken van extreme onderwaarschijnlijkheden. In het hoofdstuk ‘Modeling uncertainty’ geef ik een inleidend overzicht van de theorie van coherente onderprevisies ─ ook wel theorie van imprecieze waarschijnlijkheden genoemd ─ en de ideeën waarop ze gestoeld is. Deze theorie stelt ons in staat onzekerheid expressiever ─ en voorzichtiger ─ te beschrijven. Dit overzicht is origineel in de zin dat ze meer dan andere inleidingen vertrekt van de intuitieve theorie van coherente verzamelingen van begeerlijke gokken. Ik toon in het hoofdstuk ‘Extreme lower probabilities’ hoe we de meest extreme vormen van onzekerheid kunnen vinden die gemodelleerd kunnen worden met onderwaarschijnlijkheden. Elke andere onzekerheidstoestand beschrijfbaar met onderwaarschijnlijkheden kan geformuleerd worden in termen van deze extreme modellen. Het belang van de door mij bekomen en uitgebreid besproken resultaten in dit domein is voorlopig voornamelijk theoretisch. Het hoofdstuk ‘Inference models’ behandelt leren uit monsters komende uit een eindige, categorische verzameling. De belangrijkste basisveronderstelling die ik maak is dat het bemonsteringsproces omwisselbaar is, waarvoor ik een nieuwe definitie geef in termen van begeerlijke gokken. Mijn onderzoek naar de gevolgen van deze veronderstelling leidt ons naar enkele belangrijke representatiestellingen: onzekerheid over (on)eindige rijen monsters kan gemodelleerd worden in termen van categorie-aantallen (-frequenties). Ik bouw hier op voort om voor twee populaire gevolgtrekkingsmodellen voor categorische data ─ het voorspellende imprecies Dirichlet-multinomiaalmodel en het parametrische imprecies Dirichletmodel ─ een verhelderende afleiding te geven, louter vertrekkende van enkele grondbeginselen; deze modellen pas ik toe op speltheorie en het leren van Markov-ketens. In het laatste hoofdstuk, ‘Inference models for exponential families’, verbreed ik de blik tot niet-categorische exponentiële-familie-bemonsteringsmodellen; voorbeelden zijn normale bemonstering en Poisson-bemonstering. Eerst onderwerp ik de exponentiële families en de aanverwante toegevoegde parametrische en voorspellende previsies aan een grondig onderzoek. Deze aanverwante previsies worden gebruikt in de klassieke Bayesiaanse gevolgtrekkingsmodellen gebaseerd op toegevoegd updaten. Ze dienen als grondslag voor de nieuwe, door mij voorgestelde imprecieze-waarschijnlijkheidsgevolgtrekkingsmodellen. In vergelijking met de klassieke Bayesiaanse aanpak, laat de mijne toe om voorzichtiger te zijn bij de beschrijving van onze kennis over het bemonsteringsmodel; deze voorzichtigheid wordt weerspiegeld door het op deze modellen gebaseerd gedrag (getrokken besluiten, gemaakte voorspellingen, genomen beslissingen). Ik toon ten slotte hoe de voorgestelde gevolgtrekkingsmodellen gebruikt kunnen worden voor classificatie door de naïeve credale classificator.This thesis's main subject is deriving, proposing, and studying predictive and parametric inference models that are based on the theory of coherent lower previsions. One important side subject also appears: obtaining and discussing extreme lower probabilities. In the chapter ‘Modeling uncertainty’, I give an introductory overview of the theory of coherent lower previsions ─ also called the theory of imprecise probabilities ─ and its underlying ideas. This theory allows us to give a more expressive ─ and a more cautious ─ description of uncertainty. This overview is original in the sense that ─ more than other introductions ─ it is based on the intuitive theory of coherent sets of desirable gambles. I show in the chapter ‘Extreme lower probabilities’ how to obtain the most extreme forms of uncertainty that can be modeled using lower probabilities. Every other state of uncertainty describable by lower probabilities can be formulated in terms of these extreme ones. The importance of the results in this area obtained and extensively discussed by me is currently mostly theoretical. The chapter ‘Inference models’ treats learning from samples from a finite, categorical space. My most basic assumption about the sampling process is that it is exchangeable, for which I give a novel definition in terms of desirable gambles. My investigation of the consequences of this assumption leads us to some important representation theorems: uncertainty about (in)finite sample sequences can be modeled entirely in terms of category counts (frequencies). I build on this to give an elucidating derivation from first principles for two popular inference models for categorical data ─ the predictive imprecise Dirichlet-multinomial model and the parametric imprecise Dirichlet model; I apply these models to game theory and learning Markov chains. In the last chapter, ‘Inference models for exponential families’, I enlarge the scope to exponential family sampling models; examples are normal sampling and Poisson sampling. I first thoroughly investigate exponential families and the related conjugate parametric and predictive previsions used in classical Bayesian inference models based on conjugate updating. These previsions serve as a basis for the new imprecise-probabilistic inference models I propose. Compared to the classical Bayesian approach, mine allows to be much more cautious when trying to express what we know about the sampling model; this caution is reflected in behavior (conclusions drawn, predictions made, decisions made) based on these models. Lastly, I show how the proposed inference models can be used for classification with the naive credal classifier

    Représentation et combinaison d'informations incertaines : nouveaux résultats avec applications aux études de sûreté nucléaires

    Get PDF
    It often happens that the value of some parameters or variables of a system are imperfectly known, either because of the variability of the modelled phenomena, or because the availableinformation is imprecise or incomplete. Classical probability theory is usually used to treat these uncertainties. However, recent years have witnessed the appearance of arguments pointing to the conclusion that classical probabilities are inadequate to handle imprecise or incomplete information. Other frameworks have thus been proposed to address this problem: the three main are probability sets, random sets and possibility theory. There are many open questions concerning uncertainty treatment within these frameworks. More precisely, it is necessary to build bridges between these three frameworks to advance toward a unified handlingof uncertainty. Also, there is a need of practical methods to treat information, as using these framerowks can be computationally costly. In this work, we propose some answers to these two needs for a set of commonly encountered problems. In particular, we focus on the problems of:- Uncertainty representation- Fusion and evluation of multiple source information- Independence modellingThe aim being to give tools (both of theoretical and practical nature) to treat uncertainty. Some tools are then applied to some problems related to nuclear safety issues.Souvent, les valeurs de certains paramètres ou variables d'un système ne sont connues que de façon imparfaite, soit du fait de la variabilité des phénomènes physiques que l'on cherche à représenter,soit parce que l'information dont on dispose est imprécise, incomplète ou pas complètement fiable.Usuellement, cette incertitude est traitée par la théorie classique des probabilités. Cependant, ces dernières années ont vu apparaître des arguments indiquant que les probabilités classiques sont inadéquates lorsqu'il faut représenter l'imprécision présente dans l'information. Des cadres complémentaires aux probabilités classiques ont donc été proposés pour remédier à ce problème : il s'agit, principalement, des ensembles de probabilités, des ensembles aléatoires et des possibilités. Beaucoup de questions concernant le traitement des incertitudes dans ces trois cadres restent ouvertes. En particulier, il est nécessaire d'unifier ces approches et de comprendre les liens existants entre elles, et de proposer des méthodes de traitement permettant d'utiliser ces approches parfois cher en temps de calcul. Dans ce travail, nous nous proposons d'apporter des réponses à ces deux besoins pour une série de problème de traitement de l'incertain rencontré en analyse de sûreté. En particulier, nous nous concentrons sur les problèmes suivants :- Représentation des incertitudes- Fusion/évaluation de données venant de sources multiples- Modélisation de l'indépendanceL'objectif étant de fournir des outils, à la fois théoriques et pratiques, de traitement d'incertitude. Certains de ces outils sont ensuite appliqués à des problèmes rencontrés en sûreté nucléaire
    corecore