3,763 research outputs found

    Coherent Selection of Independent Trackers for Real-time Object Tracking

    Get PDF
    International audienceThis paper presents a new method for combining several independent and heterogeneous tracking algorithms for the task of online single-object tracking. The proposed algorithm runs several trackers in parallel, where each of them relies on a different set of complementary low-level features. Only one tracker is selected at a given frame, and the choice is based on a spatio-temporal coherence criterion and normalised confidence estimates. The key idea is that the individual trackers are kept completely independent, which reduces the risk of drift in situations where for example a tracker with an inaccurate or inappropriate appearance model negatively impacts the performance of the others. Moreover, the proposed approach is able to switch between different tracking methods when the scene conditions or the object appearance rapidly change. We experimentally show with a set of Online Adaboost-based trackers that this formulation of multiple trackers improves the tracking results in comparison to more classical combinations of trackers. And we further improve the overall performance and computational efficiency by introducing a selective update step in the tracking framework

    Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.

    Get PDF
    A framework for the logical and statistical analysis and annotation of dynamic scenes containing occlusion and other uncertainties is presented. This framework consists of three elements; an object tracker module, an object recognition/classification module and a logical consistency, ambiguity and error reasoning engine. The principle behind the object tracker and object recognition modules is to reduce error by increasing ambiguity (by merging objects in close proximity and presenting multiple hypotheses). The reasoning engine deals with error, ambiguity and occlusion in a unified framework to produce a hypothesis that satisfies fundamental constraints on the spatio-temporal continuity of objects. Our algorithm finds a globally consistent model of an extended video sequence that is maximally supported by a voting function based on the output of a statistical classifier. The system results in an annotation that is significantly more accurate than what would be obtained by frame-by-frame evaluation of the classifier output. The framework has been implemented and applied successfully to the analysis of team sports with a single camera. Key words: Visua

    Memory Based Online Learning of Deep Representations from Video Streams

    Full text link
    We present a novel online unsupervised method for face identity learning from video streams. The method exploits deep face descriptors together with a memory based learning mechanism that takes advantage of the temporal coherence of visual data. Specifically, we introduce a discriminative feature matching solution based on Reverse Nearest Neighbour and a feature forgetting strategy that detect redundant features and discard them appropriately while time progresses. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used in relevant applications like multiple face identification and tracking from unconstrained video streams. Experimental results show that the proposed method achieves comparable results in the task of multiple face tracking and better performance in face identification with offline approaches exploiting future information. Code will be publicly available.Comment: arXiv admin note: text overlap with arXiv:1708.0361

    Keck Interferometer Nuller Data Reduction and On-Sky Performance

    Get PDF
    We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools

    Aircraft state estimation using cameras and passive radar

    Get PDF
    Multiple target tracking (MTT) is a fundamental task in many application domains. It is a difficult problem to solve in general, so applications make use of domain specific and problem-specific knowledge to approach the problem by solving subtasks separately. This work puts forward a MTT framework (MTTF) which is based on the Bayesian recursive estimator (BRE). The MTTF extends a particle filter (PF) to handle the multiple targets and adds a probabilistic graphical model (PGM) data association stage to compute the mapping from detections to trackers. The MTTF was applied to the problem of passively monitoring airspace. Two applications were built: a passive radar MTT module and a comprehensive visual object tracking (VOT) system. Both applications require a solution to the MTT problem, for which the MTTF was utilized. The VOT system performed well on real data recorded at the University of Cape Town (UCT) as part of this investigation. The system was able to detect and track aircraft flying within the region of interest (ROI). The VOT system consisted of a single camera, an image processing module, the MTTF module and an evaluation module. The world coordinate frame target localization was within ±3.2 km and these results are presented on Google Earth. The image plane target localization has an average reprojection error of ±17.3 pixels. The VOT system achieved an average area under the curve value of 0.77 for all receiver operating characteristic curves. These performance figures are typical over the ±1 hr of video recordings taken from the UCT site. The passive radar application was tested on simulated data. The MTTF module was designed to connect to an existing passive radar system developed by Peralex Electronics Pty Ltd. The MTTF module estimated the number of targets in the scene and localized them within a 2D local world Cartesian coordinate system. The investigations encompass numerous areas of research as well as practical aspects of software engineering and systems design

    Audio‐Visual Speaker Tracking

    Get PDF
    Target motion tracking found its application in interdisciplinary fields, including but not limited to surveillance and security, forensic science, intelligent transportation system, driving assistance, monitoring prohibited area, medical science, robotics, action and expression recognition, individual speaker discrimination in multi‐speaker environments and video conferencing in the fields of computer vision and signal processing. Among these applications, speaker tracking in enclosed spaces has been gaining relevance due to the widespread advances of devices and technologies and the necessity for seamless solutions in real‐time tracking and localization of speakers. However, speaker tracking is a challenging task in real‐life scenarios as several distinctive issues influence the tracking process, such as occlusions and an unknown number of speakers. One approach to overcome these issues is to use multi‐modal information, as it conveys complementary information about the state of the speakers compared to single‐modal tracking. To use multi‐modal information, several approaches have been proposed which can be classified into two categories, namely deterministic and stochastic. This chapter aims at providing multimedia researchers with a state‐of‐the‐art overview of tracking methods, which are used for combining multiple modalities to accomplish various multimedia analysis tasks, classifying them into different categories and listing new and future trends in this field
    corecore