18,034 research outputs found

    Finite quantum tomography via semidefinite programming

    Full text link
    Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References \cite{schack,Pegg,Barnett,Buzek,Weigert}.Comment: 25 page

    Quantum Tomography twenty years later

    Full text link
    A sample of some relevant developments that have taken place during the last twenty years in classical and quantum tomography are displayed. We will present a general conceptual framework that provides a simple unifying mathematical picture for all of them and, as an effective use of it, three subjects have been chosen that offer a wide panorama of the scope of classical and quantum tomography: tomography along lines and submanifolds, coherent state tomography and tomography in the abstract algebraic setting of quantum systems

    Quantum process tomography with coherent states

    Full text link
    We develop an enhanced technique for characterizing quantum optical processes based on probing unknown quantum processes only with coherent states. Our method substantially improves the original proposal [M. Lobino et al., Science 322, 563 (2008)], which uses a filtered Glauber-Sudarshan decomposition to determine the effect of the process on an arbitrary state. We introduce a new relation between the action of a general quantum process on coherent state inputs and its action on an arbitrary quantum state. This relation eliminates the need to invoke the Glauber-Sudarshan representation for states; hence it dramatically simplifies the task of process identification and removes a potential source of error. The new relation also enables straightforward extensions of the method to multi-mode and non-trace-preserving processes. We illustrate our formalism with several examples, in which we derive analytic representations of several fundamental quantum optical processes in the Fock basis. In particular, we introduce photon-number cutoff as a reasonable physical resource limitation and address resource vs accuracy trade-off in practical applications. We show that the accuracy of process estimation scales inversely with the square root of photon-number cutoff.Comment: 18 pages, 2 figure

    Quantum optomechanics beyond the quantum coherent oscillation regime

    Full text link
    Interaction with a thermal environment decoheres the quantum state of a mechanical oscillator. When the interaction is sufficiently strong, such that more than one thermal phonon is introduced within a period of oscillation, quantum coherent oscillations are prevented. This is generally thought to preclude a wide range of quantum protocols. Here, we introduce a pulsed optomechanical protocol that allows ground state cooling, general linear quantum non-demolition measurements, optomechanical state swaps, and quantum state preparation and tomography without requiring quantum coherent oscillations. Finally we show how the protocol can break the usual thermal limit for sensing of impulse forces.Comment: 6 pages, 3 figure

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Maximum-likelihood coherent-state quantum process tomography

    Get PDF
    Coherent-state quantum process tomography (csQPT) is a method of completely characterizing a quantum-optical "black box" by probing it with coherent states and performing homodyne measurements on the output [M. Lobino et al, Science 322, 563 (2008)]. We present a technique for csQPT that is fully based on statistical inference, specifically, quantum expectation-maximization. The method relies on the Jamiolkowski isomorphism and iteratively reconstructs the process tensor in the Fock basis directly from the experimental data. This approach permits incorporation of a priori constraints into the reconstruction procedure, thereby guaranteeing that the resulting process tensor is physically consistent. Furthermore, our method is easier to implement and requires a narrower range of coherent states than its predecessors. We test its feasibility using simulations on several experimentally relevant processes.Comment: 17 pages, 4 figure

    On-chip quantum tomography of mechanical nano-scale oscillators with guided Rydberg atoms

    Full text link
    Nano-mechanical oscillators as well as Rydberg-atomic waveguides hosted on micro-fabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum-coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum non-demolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible, by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nano-mechanics, taking into account noise and error sources.Comment: 11 pages, 5 figures, 1 tabl
    corecore