478 research outputs found

    Analysis of Sparse MIMO Radar

    Full text link
    We consider a multiple-input-multiple-output radar system and derive a theoretical framework for the recoverability of targets in the azimuth-range domain and the azimuth-range-Doppler domain via sparse approximation algorithms. Using tools developed in the area of compressive sensing, we prove bounds on the number of detectable targets and the achievable resolution in the presence of additive noise. Our theoretical findings are validated by numerical simulations

    In pursuit of high resolution radar using pursuit algorithms

    Get PDF
    Radar receivers typically employ matched filters designed to maximize signal to noise ratio (SNR) in a single target environment. In a multi-target environment, however, matched filter estimates of target environment often consist of spurious targets because of radar signal sidelobes. As a result, matched filters are not suitable for use in high resolution radars operating in multi-target environments. Assuming a point target model, we show that the radar problem can be formulated as a linear under-determined system with a sparse solution. This suggests that radar can be considered as a sparse signal recovery problem. However, it is shown that the sensing matrix obtained using common radar signals does not usually satisfy the mutual coherence condition. This implies that using recovery techniques available in compressed sensing literature may not result in the optimal solution. In this thesis, we focus on the greedy algorithm approach to solve the problem and show that it naturally yields a quantitative measure for radar resolution. In addition, we show that the limitations of the greedy algorithms can be attributed to the close relation between greedy matching pursuit algorithms and the matched filter. This suggests that improvements to the resolution capability of the greedy pursuit algorithms can be made by using a mismatched signal dictionary. In some cases, unlike the mismatched filter, the proposed mismatched pursuit algorithm is shown to offer improved resolution and stability without any noticeable difference in detection performance. Further improvements in resolution are proposed by using greedy algorithms in a radar system using multiple transmit waveforms. It is shown that while using the greedy algorithms together with linear channel combining can yield significant resolution improvement, a greedy approach using nonlinear channel combining also shows some promise. Finally, a forward-backward greedy algorithm is proposed for target environments comprising of point targets as well as extended targets

    Beyond the spatio-temporal limits of atmospheric radars: inverse problem techniques and MIMO systems

    Get PDF
    The Earth’s upper atmosphere (UA) is a highly dynamic region dominated by atmospheric waves and stratified turbulence covering a wide range of spatio-temporal scales. A comprehensive study of the UA requires measurements over a broad range of frequencies and spatial wavelengths, which are prohibitively costly. To improve the understanding of the UA, an investment in efficient and large observational infrastructures is required. This work investigates remote sensing techniques based on MIMO and inverse problems techniques to improve the capabilities of current atmospheric radars
    • …
    corecore