2,056 research outputs found

    Message passing support in the Avalanche widget

    Get PDF
    Journal ArticleMinimizing communication latency in message passing multiprocessing systems is critical. An emerging problem in these systems is the latency contribution costs caused by the need to percolate the message through the memory hierarchy (at both sending and receiving nodes) and the additional cost of managing consistency within the hierarchy. This paper, considers three important aspects of these costs: cache coherence, message copying, and cache miss rates. The paper then shows via a simulation study how a design called the Widget can be used with existing commercial workstation technology to significantly reduce these costs to support efficient message passing in the Avalanche multiprocessing system

    Options in Scan Processing for Shared-Disk Parallel Database Systems

    Get PDF
    Shared-disk database systems offer a high degree of freedom in the allocation of workload compared to shared-nothing architectures. This creates a great potential for load balancing but also introduces additional complexity into the process of query scheduling. This report surveys the problems and opportunities faced in scan processing in a shared-disk environment. We list the parameters to tune and the decisions to make, as well as some known solutions and commonsense considerations, in order to identify the most promising areas of future research

    Reducing consistency traffic and cache misses in the avalanche multiprocessor

    Get PDF
    Journal ArticleFor a parallel architecture to scale effectively, communication latency between processors must be avoided. We have found that the source of a large number of avoidable cache misses is the use of hardwired write-invalidate coherency protocols, which often exhibit high cache miss rates due to excessive invalidations and subsequent reloading of shared data. In the Avalanche project at the University of Utah, we are building a 64-node multiprocessor designed to reduce the end-to-end communication latency of both shared memory and message passing programs. As part of our design efforts, we are evaluating the potential performance benefits and implementation complexity of providing hardware support for multiple coherency protocols. Using a detailed architecture simulation of Avalanche, we have found that support for multiple consistency protocols can reduce the time parallel applications spend stalled on memory operations by up to 66% and overall execution time by up to 31%. Most of this reduction in memory stall time is due to a novel release-consistent multiple-writer write-update protocol implemented using a write state buffer
    • …
    corecore