122 research outputs found

    Similarity Measurement of Breast Cancer Mammographic Images Using Combination of Mesh Distance Fourier Transform and Global Features

    Get PDF
    Similarity measurement in breast cancer is an important aspect of determining the vulnerability of detected masses based on the previous cases. It is used to retrieve the most similar image for a given mammographic query image from a collection of previously archived images. By analyzing these results, doctors and radiologists can more accurately diagnose early-stage breast cancer and determine the best treatment. The direct result is better prognoses for breast cancer patients. Similarity measurement in images has always been a challenging task in the field of pattern recognition. A widely-adopted strategy in Content-Based Image Retrieval (CBIR) is comparison of local shape-based features of images. Contours summarize the orientations and sizes images, allowing for heuristic approach in measuring similarity between images. Similarly, global features of an image have the ability to generalize the entire object with a single vector which is also an important aspect of CBIR. The main objective of this paper is to enhance the similarity measurement between query images and database images so that the best match is chosen from the database for a particular query image, thus decreasing the chance of false positives. In this paper, a method has been proposed which compares both local and global features of images to determine their similarity. Three image filters are applied to make this comparison. First, we filter using the mesh distance Fourier descriptor (MDFD), which is based on the calculation of local features of the mammographic image. After this filter is applied, we retrieve the five most similar images from the database. Two additional filters are applied to the resulting image set to determine the best match. Experiments show that this proposed method overcomes shortcomings of existing methods, increasing accuracy of matches from 68% to 88%

    Wave-Atom and Cycle-Spinning-Based Noise Reduction in Mammography Images

    Get PDF
    Image denoising is crucial in medical image processing. Digital mammography depends significantly on de-noising for computer-aided-detection of malignant cells like Microcalcifications. In this work, we proposed an unique hybrid approach to reduce Gaussian noise in digital mammograms by combining the wave-atom translation and cycle spinning methods. Pictures denoised by thresholding of coefficients would produce pseudo-Gibbs events because wave atoms are not translationally invariant. Circular motion is applied to keep away the artefacts. Experimental results clearly establish that the method is effective at filtering out background noise while maintaining the integrity of edges and enhancing picture quality. Mini-Mias pictures with variable quantities of Gaussian Noise are used to evaluate and analyse the performance using peak signal-to-noise ratio and structural similarity index.  The provided technique outperforms several current filters in terms of evaluated results of peak signal-to-noise ratio and structural similarity index

    Visibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaging

    Get PDF
    136 p.When acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Visibility Recovery on Images Acquired in Attenuating Media. Application to Underwater, Fog, and Mammographic Imaging

    Get PDF
    When acquired in attenuating media, digital images often suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasantness for the user. In these cases, mathematical image processing reveals itself as an ideal tool to recover some of the information lost during the degradation process. In this dissertation, we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fog removal and mammographic image processing. In the case of digital mammograms, X-ray beams traverse human tissue, and electronic detectors capture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces lowcontrasted images in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility. For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges, in this dissertation we develop new methodologies that rely on: a) physical models of the observed degradation, and b) the calculus of variations. Equipped with this powerful machinery, we design novel theoretical and computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energies are composed of different integral terms that are simultaneously minimized by means of efficient numerical schemes, producing a clean, visually-pleasant and useful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validate our methods, confirming that the developed techniques outperform other existing approaches in the literature
    • …
    corecore