2,893 research outputs found

    A synthesis of fuzzy rule-based system verification.

    Get PDF
    The verification of fuzzy rule bases for anomalies has received increasing attention these last few years. Many different approaches have been suggested and many are still under investigation. In this paper, we give a synthesis of methods proposed in literature that try to extend the verification of clasical rule bases to the case of fuzzy knowledge modelling, without needing a set of representative input. Within this area of fyzzy V&V we identify two dual lines of thought respectively leading to what is identified as static and dynamic anomaly detection methods. Static anomaly detection essentially tries to use similarity, affinity or matching measures to identify anomalies wihin a fuzzy rule base. It is assumed that the detection methods can be the same as those used in a non-fuzzy environment, except that the formerly mentioned measures indicate the degree of matching of two fuzzy expressions. Dynamic anomaly detection starts from the basic idea that any anomaly within a knowledge representation formalism, i.c. fuzzy if-then rules, can be identified by performing a dynamic analysis of the knowledge system, even without providing special input to the system. By imposing a constraint on the results of inference for an anomaly not to occur, one creates definitions of the anomalies that can only be verified if the inference pocess, and thereby the fuzzy inference operator is involved in the analysis. The major outcome of the confrontation between both approaches is that their results, stated in terms of necessary and/or sufficient conditions for anomaly detection within a particular situation, are difficult to reconcile. The duality between approaces seems to have translated into a duality in results. This article addresses precisely this issue by presenting a theoretical framework which anables us to effectively evaluate the results of both static and dynamic verification theories.

    An eclectic quadrant of rule based system verification: work grounded in verification of fuzzy rule bases.

    Get PDF
    In this paper, we used a research approach based on grounded theory in order to classify methods proposed in literature that try to extend the verification of classical rule bases to the case of fuzzy knowledge modeling. Within this area of verification we identify two dual lines of thought respectively leading to what is termed respectively static and dynamic anomaly detection methods. The major outcome of the confrontation of both approaches is that their results, most often stated in terms of necessary and/or sufficient conditions are difficult to reconcile. This paper addresses precisely this issue by the construction of a theoretical framework, which enables to effectively evaluate the results of both static and dynamic verification theories. Things essentially go wrong when in the quest for a good affinity, matching or similarity measure, one neglects to take into account the effect of the implication operator, an issue that rises above and beyond the fuzzy setting that initiated the research. The findings can easily be generalized to verification issues in any knowledge coding setting.Systems;

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Weighted logics for artificial intelligence : an introductory discussion

    Get PDF
    International audienceBefore presenting the contents of the special issue, we propose a structured introductory overview of a landscape of the weighted logics (in a general sense) that can be found in the Artificial Intelligence literature, highlighting their fundamental differences and their application areas

    Typicality, graded membership, and vagueness

    Get PDF
    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory—the Threshold Model—is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use

    Bayesian Epistemology

    Get PDF

    Personalizable Knowledge Integration

    Get PDF
    Large repositories of data are used daily as knowledge bases (KBs) feeding computer systems that support decision making processes, such as in medical or financial applications. Unfortunately, the larger a KB is, the harder it is to ensure its consistency and completeness. The problem of handling KBs of this kind has been studied in the AI and databases communities, but most approaches focus on computing answers locally to the KB, assuming there is some single, epistemically correct solution. It is important to recognize that for some applications, as part of the decision making process, users consider far more knowledge than that which is contained in the knowledge base, and that sometimes inconsistent data may help in directing reasoning; for instance, inconsistency in taxpayer records can serve as evidence of a possible fraud. Thus, the handling of this type of data needs to be context-sensitive, creating a synergy with the user in order to build useful, flexible data management systems. Inconsistent and incomplete information is ubiquitous and presents a substantial problem when trying to reason about the data: how can we derive an adequate model of the world, from the point of view of a given user, from a KB that may be inconsistent or incomplete? In this thesis we argue that in many cases users need to bring their application-specific knowledge to bear in order to inform the data management process. Therefore, we provide different approaches to handle, in a personalized fashion, some of the most common issues that arise in knowledge management. Specifically, we focus on (1) inconsistency management in relational databases, general knowledge bases, and a special kind of knowledge base designed for news reports; (2) management of incomplete information in the form of different types of null values; and (3) answering queries in the presence of uncertain schema matchings. We allow users to define policies to manage both inconsistent and incomplete information in their application in a way that takes both the user's knowledge of his problem, and his attitude to error/risk, into account. Using the frameworks and tools proposed here, users can specify when and how they want to manage/solve the issues that arise due to inconsistency and incompleteness in their data, in the way that best suits their needs

    AGM 25 years: twenty-five years of research in belief change

    Get PDF
    The 1985 paper by Carlos Alchourrón (1931–1996), Peter Gärdenfors, and David Makinson (AGM), “On the Logic of Theory Change: Partial Meet Contraction and Revision Functions” was the starting-point of a large and rapidly growing literature that employs formal models in the investigation of changes in belief states and databases. In this review, the first twenty five years of this development are summarized. The topics covered include equivalent characterizations of AGM operations, extended representations of the belief states, change operators not included in the original framework, iterated change, applications of the model, its connections with other formal frameworks, computatibility of AGM operations, and criticism of the model.info:eu-repo/semantics/publishedVersio

    Probabilistic Reasoning with Abstract Argumentation Frameworks

    Get PDF
    Abstract argumentation offers an appealing way of representing and evaluating arguments and counterarguments. This approach can be enhanced by considering probability assignments on arguments, allowing for a quantitative treatment of formal argumentation. In this paper, we regard the assignment as denoting the degree of belief that an agent has in an argument being acceptable. While there are various interpretations of this, an example is how it could be applied to a deductive argument. Here, the degree of belief that an agent has in an argument being acceptable is a combination of the degree to which it believes the premises, the claim, and the derivation of the claim from the premises. We consider constraints on these probability assignments, inspired by crisp notions from classical abstract argumentation frameworks and discuss the issue of probabilistic reasoning with abstract argumentation frameworks. Moreover, we consider the scenario when assessments on the probabilities of a subset of the arguments are given and the probabilities of the remaining arguments have to be derived, taking both the topology of the argumentation framework and principles of probabilistic reasoning into account. We generalise this scenario by also considering inconsistent assessments, i.e., assessments that contradict the topology of the argumentation framework. Building on approaches to inconsistency measurement, we present a general framework to measure the amount of conflict of these assessments and provide a method for inconsistency-tolerant reasoning
    • …
    corecore