3,610 research outputs found

    Heterogeneous V2V Communications in Multi-Link and Multi-RAT Vehicular Networks

    Get PDF
    Connected and automated vehicles will enable advanced traffic safety and efficiency applications thanks to the dynamic exchange of information between vehicles, and between vehicles and infrastructure nodes. Connected vehicles can utilize IEEE 802.11p for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. However, a widespread deployment of connected vehicles and the introduction of connected automated driving applications will notably increase the bandwidth and scalability requirements of vehicular networks. This paper proposes to address these challenges through the adoption of heterogeneous V2V communications in multi-link and multi-RAT vehicular networks. In particular, the paper proposes the first distributed (and decentralized) context-aware heterogeneous V2V communications algorithm that is technology and application agnostic, and that allows each vehicle to autonomously and dynamically select its communications technology taking into account its application requirements and the communication context conditions. This study demonstrates the potential of heterogeneous V2V communications, and the capability of the proposed algorithm to satisfy the vehicles' application requirements while approaching the estimated upper bound network capacity

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Optimal Information-Theoretic Wireless Location Verification

    Full text link
    We develop a new Location Verification System (LVS) focussed on network-based Intelligent Transport Systems and vehicular ad hoc networks. The algorithm we develop is based on an information-theoretic framework which uses the received signal strength (RSS) from a network of base-stations and the claimed position. Based on this information we derive the optimal decision regarding the verification of the user's location. Our algorithm is optimal in the sense of maximizing the mutual information between its input and output data. Our approach is based on the practical scenario in which a non-colluding malicious user some distance from a highway optimally boosts his transmit power in an attempt to fool the LVS that he is on the highway. We develop a practical threat model for this attack scenario, and investigate in detail the performance of the LVS in terms of its input/output mutual information. We show how our LVS decision rule can be implemented straightforwardly with a performance that delivers near-optimality under realistic threat conditions, with information-theoretic optimality approached as the malicious user moves further from the highway. The practical advantages our new information-theoretic scheme delivers relative to more traditional Bayesian verification frameworks are discussed.Comment: Corrected typos and introduced new threat model

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore