181 research outputs found

    ZNF804A genotype modulates neural activity during working memory for faces

    Get PDF
    Copyright © 2013 S. Karger AG, Basel.Peer reviewedPublisher PD

    The impact of psychosis genome-wide associated ZNF804A variation on verbal fluency connectivity

    Get PDF
    WOS:000425076000003Schizophrenia (SCZ) and bipolar disorder (BD) have high heritability. Genome-wide association studies (GWAS) have identified ZNF804A as a significant risk gene for both illnesses. A validation of this finding at the brain systems-level is imperative as there is still little understanding of how it heightens risk. Based in part on our recent findings of an effect on widespread decreased white matter microstructural fractional anisotropy (putatively a proxy of its integrity), particularly strong in SCZ, we asked whether the risk allele has a detrimental effect on regional brain activation and functional connectivity during a type of cognitive processing which is, together with its neural correlates, impaired in BD and SCZ: verbal fluency. Functional MRI and genotype data was collected from 80 healthy volunteers, and 54 SCZ and 40 BD patients. A standard multifactorial analysis of variance using statistical parametric mapping and significance correction of FWE p < 0.05 was used. We found the GWAS risk allele A was associated with decreased positive functional coupling between the left precentral gyrus/inferior frontal gyrus (i.e. the most highly recruited area for the task) and: 1) the left inferior frontal gyrus, and 2) the left posterior cingulate gyrus, encompassing the precuneus; both as a main effect across controls and psychosis patients. Such association of the risk allele with reduced functional connectivity (with no area where the opposite main effect was detected), converges with findings in other tasks, our previous finding of its widespread impact on brain white matter microstructure, and with the dysconnectivity hypothesis of SCZ.info:eu-repo/semantics/publishedVersio

    The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder

    Get PDF
    Genome-wide studies have identified allele A (adenine) of single nucleotide polymorphism (SNP) rs1006737 of the calcium-channel CACNA1C gene as a risk factor for both schizophrenia (SZ) and bipolar disorder (BD) as well as allele A for rs1344706 in the zinc-finger ZNF804A gene. These illnesses have also been associated with white matter abnormalities, reflected by reductions in fractional anisotropy (FA), measured using diffusion tensor imaging (DTI). We assessed the impact of the CACNA1C psychosis risk variant on FA in SZ, BD and health. 230 individuals (with existing ZNF804A rs1344706 genotype data) were genotyped for CACNA1C rs1006737 and underwent DTI. FA data was analysed with tract-based spatial statistics and threshold-free cluster enhancement significance correction (p < 0.05) to detect effects of CACNA1C genotype on FA, and its potential interaction with ZNF804A genotype and with diagnosis, on FA. There was no significant main effect of the CACNA1C genotype on FA, nor diagnosis by genotype(s) interactions. Nevertheless, when inspecting SZ in particular, risk allele carriers had significantly lower FA than the protective genotype individuals, in portions of the left middle occipital and parahippocampal gyri, right cerebelleum, left optic radiation and left inferior and superior temporal gyri. Our data suggests a minor involvement of CACNA1C rs1006737 in psychosis via conferring susceptibility to white matter microstructural abnormalities in SZ. Put in perspective, ZNF804A rs1344706, not only had a significant main effect, but its SZ-specific effects were two orders of magnitude more widespread than that of CACNA1C rs1006737

    Neurobiology of schizotypal phenotypes - Schizotypy as a framework for dimensional psychiatry

    Get PDF
    Complex, dimensional phenotypes represent a valuable framework for the analysis of fundamental neurobiological mechanisms of psychiatric disorders. They facilitate the deconstruction of diagnostic entities and the study of protective processes that prevent progression into clinical domains. Within the psychosis spectrum, schizotypy describes a multidimensional personality construct with behavioural, cognitive, and emotional characteristics similar to key symptoms of schizophrenia, that can equally be grouped into the dimensions positive (magical thinking, unusual perceptions and beliefs), negative (introversion, anhedonia), and disorganised (cognitive disorganisation, eccentricity). Within a continuum model of psychosis, schizotypy is discussed as variation of healthy function, and as risk phenotype of schizophrenia and psychosis proneness, assuming a (partially) overlapping genetic architecture along the spectrum. Current aetiological models propose an impact of genetic liability, in interaction with environmental risk and modulated by protective factors like cognitive function, through disruptions in neuronal development. In fact, recent studies show that schizotypy is associated with brain structural variation, partially overlapping with regions that are also impaired in patients with schizophrenia spectrum disorders. This dissertation characterised neurobiological determinants of schizotypy regarding its genetic basis and neural networks, aiming to develop a multimodal model to integrate those into a joint framework. STUDIES I and IV investigated the genetic structure of schizotypy, demonstrating its association with common variants (single nucleotide polymorphisms, SNPs) in genes (CACNA1C and ZNF804A) involved in processes of neuronal development and identified as risk genes for schizophrenia and other psychiatric disorders (STUDY I). In this association, biological sex has a moderating role. However, a direct association of a polygenic schizophrenia risk score, based on cumulative SNP-risk, was not established (STUDY IV). STUDIES II and III analysed brain structural correlates of schizotypy dimensions, finding an association of the positive dimension (and symptom-associated distress) with grey matter volume in associative brain areas precuneus, striatum and inferior temporal gyrus. STUDY II further indicates that this relationship can be buffered by above average general cognitive function. Study V ultimately integrates the previous results into a joint multivariate model that proves to explain a substantial amount of phenotypic variance. The model shows that the interaction effect of polygenic and poly-environmental risk on positive schizotypy is mediated through brain structural variation in the precuneus, and modulated by the level of executive function. In conclusion, this dissertation shows that schizotypy is associated with genetic polymorphisms involved in neuronal development and function. While those are identified as schizophrenia risk variants, the lack of an association with polygenic schizophrenia risk suggests a limited overlap of the genetic architectures of the phenotypes. The confirmation of the multivariate model, however, indicates an indirect effect through variations in brain structure and modulated by intra- and extrapersonal factors. Accordingly, particularly positive schizotypy is associated with structural alterations in brain regions central for the integration, evaluation, and attribution of perceptual information within associative neuronal networks. Thus, schizotypy is a valuable endophenotype of the schizophrenia spectrum, showing that pathophysiological aberrations lie on a continuum with variation of healthy functioning. Schizotypy, however, also describes the manifestation of interindividual variation in behaviour, cognition, and emotion, with its underlying mechanisms representing an exemplary framework for the study of dimensional, phenotypic spectra

    Analysis of the impact of synaptic plasticity genes and Human Accelerated Regions on brain function and structure: from the healthy brain to schizophrenia

    Full text link
    [eng] Schizophrenia is a severe psychiatric disorder affecting around 24 million people worldwide. While we begin to disentangle the biological actors implicated in the origin of the disorder, the precise aetiological mechanisms remain largely unknown. Therefore, psychiatry research efforts still need to focus on a better understanding of the complex biological foundations of the disorder to achieve more precise diagnoses and the development of novel therapeutic strategies improving the patients’ quality of life. The prevailing etiopathological hypothesis considers that schizophrenia originates from the interplay between subtle genetic and environmental insults that disrupt the perfectly orchestrated mechanisms guiding neurodevelopment. Additionally, from an evolutionary perspective, it is suggested that schizophrenia represents a costly trade-off in the evolution of human-specific ontogenic neurodevelopmental processes sustaining the inherent complexity and variability of brain functioning, cognition, and behaviour. Along the neurodevelopmental process, the synapse formation and the organisation and maturation of neural circuits anchor the emergence of distinctive human cortical brain functions. In turn, multidisciplinary evidence indicates that synaptic alterations participate in brain dysfunctions, eventually leading to the emergence of the symptoms and cognitive deficits of schizophrenia. Accordingly, it is suggested that synaptic plasticity impairments play a critical role in the pathophysiology of the disorder. Among genes converging in neurodevelopmental and synaptic plasticity pathways, there are genes mediating signalling pathways involved in neural homeostasis, dendritic spine development and neural excitability, such as KCNH2, DISC1, CACNA1C and ZNF804A, all of them previously associated with the risk for schizophrenia. Moreover, evolutionary approaches have identified regions that accumulated human-specific changes since the divergence from chimpanzees, like Human Accelerated Regions (HARs). These regions act as transcriptional regulatory elements that endow human neurodevelopment with unique characteristics and harbour schizophrenia genetic susceptibility variants. To facilitate the identification of the genetic and biological mechanisms involved in schizophrenia aetiology, the use of brain-based intermediate phenotypes is a valuable strategy. Following two approaches centred on the genetic-phenotypic correlates of synaptic plasticity candidate genes and HARs sequences in the brain-based alterations in schizophrenia, this thesis includes four original articles and one systematic review. In these articles, we report the effect of common polymorphisms in KCNH2, DISC1, CACNA1C and ZNF804A genes and the polygenic load of HARs-informative sets on the differences observed between healthy brains and brains with schizophrenia. Overall, the results validate the efficacy of neuroimaging phenotypes to identify the genetic determinants of schizophrenia and point out the complementarity of candidate genes and genome-wide approaches in the study of the genetic architecture of the disorder. First, we describe the role of KCNH2 and DISC1 genetic variability in modulating the attentional and working memory-related functional responses in a diagnosis- dependent manner. Furthermore, we identify that the epistasis between two schizophrenia GWAS-associated genes, CACNAC1C and ZNF804A, influence the functional ability to adapt to increased working memory difficulty euqally in healthy controls and patients with schizophrenia. Second, we present a review of how HARs underlie human neurodevelopmental signatures, brain configuration, functioning and susceptibility behind psychiatric disorders. Likewise, we report the modulatory effect of HARs polygenicity on brain cortical architectural differences in schizophrenia and provide evidence on the importance of foetal-active regulatory HARs in patients' cortical surface area variability. Globally, the findings exposed in this thesis point towards the fact that the aetiological foundations of schizophrenia are related to the individual genetic differences altering neurodevelopment and synaptic plasticity trajectories but also to the genomic make-up that defines us as a species. This thesis provides a drop in the ocean of knowledge on disorders inherently linked to the human condition and has sought to comprehend the unique characteristics of our brain to help unravel what it means to be human.[cat] L’esquizofrènia és un trastorn neuropsiquiàtric greu que afecta a 24 milions de persones a tot el món. Tot i que comencem a conèixer els mecanismes biològics implicats en l’origen del trastorn, els processos etiològics precisos continuen essent en gran part desconeguts. Per tant, els esforços en la recerca encara necessiten dirigir-se en millorar el coneixement dels fonaments biològics del trastorn, per tal d’aconseguir un diagnòstic més precís i el desenvolupament de noves estratègies terapèutiques que millorin la qualitat de vida dels pacients. La hipòtesi etiopatogènica predominant considera que el trastorn s’origina a partir de la interacció entre factors genètics i ambientals que pertorben els mecanismes perfectament orquestrats que guien el neurodesenvolupament. A més, des d’una perspectiva evolutiva, s’ha suggerit que l’esquizofrènia representaria el “preu a pagar” per evolució dels processos ontogènics específicament humans que sustenten la complexitat i la variabilitat inherent al funcionament del cervell, la cognició i el comportament de la nostra espècie. Al llarg del neurodevenvolupament, la formació de sinapsis i l’organització i maduració dels circuits neurals ancoren l’aparició de funcions cerebrals corticals distintivament humanes. Al seu torn, evidències multidisciplinàries indiquen que les alteracions sinàptiques participen en disfuncions cerebrals que tenen com a resultat l’aparició dels símptomes cognitius i clínics de l’esquizofrènia. En conseqüència, s’ha proposat que les alteracions de la plasticitat sinàptica tenen un paper crític en la fisiopatologia del trastorn. Entre els gens que conflueixen en vies del neurodesenvolupament i de plasticitat sinàptica, hi ha gens que participen en vies de senyalització implicades en l’homeòstasi neuronal, el desenvolupament de les espines dendrítiques i l’excitabilitat neuronal, com els gens KCNH2, el DISC1, el CACNA1C i el ZNF804A, tots prèviament associats amb el risc per a l’esquizofrènia. A més, aproximacions evolutives han identificat regions que han acumulat canvis específicament en humans des de la divergència amb els ximpanzés, com les Regions Humanes Accelerades (o Human Accelerated Regions, HARs en anglès). Aquestes regions actuen com a elements reguladors de la transcripció atorgant característiques úniques al neurodesenvolupament humà, i contenen variants genètiques de susceptibilitat per a l’esquizofrènia. Per tal de facilitar l’identificar els mecanismes genètics i biològics implicats en l’etiologia de l’esquizofrènia, la utilització de fenotips cerebrals intermedis, com mesures de neuroimatge funcional i estructural, representa una estratègia molt útil. Seguint dues aproximacions centrades en l’anàlisi dels correlats genètics-fenotípics entre gens candidats relacionats amb la plasticitat sinàptica i regions HARs i les alteracions cerebrals de l’esquizofrènia, aquesta tesi inclou quatre articles originals i una revisió sistemàtica. En aquests articles, exposem l’efecte de polimorfismes en els gens KCNH2, DISC1, CACNA1C i ZNF804A i la càrrega poligènica en conjunts informatius de HARs sobre les diferències observades entre cervells de persones sanes i persones amb esquizofrènia. En conjunt, els resultats validen l’efectivitat dels fenotips de neuroimatge per identificar els determinants genètics de l’esquizofrènia i posen de manifest la complementarietat de les aproximacions centrades tant en gens candidats com en la variabilitat global del genoma per a l’estudi de l’arquitectura genètica del trastorn. Primer, descrivim el paper de la variabilitat genètica dels genes KCNH2 i DISC1 en la modulació de la resposta funcional a l’atenció i la memòria de treball de manera condicionada al diagnòstic. També, identifiquem que l’epistasi entre dos gens associats amb l’esquizofrènia a nivell de GWAS, el CACNAC1C i el ZNF804A, influeix en la capacitat funcionalde cervell per adaptar-se a l’increment de requeriments cognitius en memòria de treball en controls sans i pacients amb esquizofrènia. En segon lloc, oferim una revisió sobre com les HARs sustenten les característiques del neurodesenvolupament humà, la configuració cerebral, el funcionament i la susceptibilitat per als trastorns psiquiàtrics Així mateix, informem de l'efecte modulador de la poligenicitat de les HARs sobre les diferències en l’arquitectura cortical en l'esquizofrènia i proporcionem evidències sobre l’especial rellevància de les HARs associades amb elements reguladors de la transcripció actius durant l’etapa fetal. De manera global, els resultats d’aquesta tesi indiquen que els fonaments etiològics de l’esquizofrènia estan relacionats amb diferències genètiques individuals que impacten en les trajectòries del neurodesenvolupament i les vies de plasticitat sinàptica, així com amb la composició genòmica que ens defineix com a espècie. Aquesta tesi aporta una gota en l’oceà del coneixement sobre els trastorns intrínsecament vinculats a la condició humana i ha pretès contribuir en la comprensió de les característiques úniques del nostre cervell per ajudar a entendre què vol dir ser humà.[spa] La esquizofrenia es un trastorno psiquiátrico que afecta a 24 millones de personas en todo el mundo. A pesar de que empezamos a conocer los mecanismos biológicos implicados en el origen del trastorno, los procesos etiológicos precisos continúan siendo en gran parte desconocidos. Por ello, los esfuerzos investigadores todavía necesitan dirigirse en mejorar el conocimiento de los fundamentos biológicos del trastorno, para así conseguir una mayor precisión en el diagnóstico y desarrollar nuevas estrategias terapéuticas que mejoren la calidad de vida de los pacientes. La hipótesis etiopatogénica predominante considera que el trastorno se origina de la interacción entre factores genéticos y ambientales que modifican los mecanismos perfectamente orquestados que guían el neurodesarrollo. Además, desde una perspectiva evolutiva, se sostiene que la esquizofrenia representa “el precio a pagar” por la evolución de los procesos ontogénicos específicamente humanos que sustentan la complejidad y la variabilidad inherente al funcionamiento del cerebro, así como la cognición y comportamiento de nuestra especie. A lo largo del neurodesarrollo, la formación de sinapsis y la organización y maduración de los circuitos neurales anclan la aparición de funciones cerebrales corticales distintivamente humanas. Por su parte, evidencias multidisciplinares indican que las alteraciones sinápticas participan en disfunciones cerebrales asociadas a la aparición de los síntomas cognitivos y clínicos de la esquizofrenia. En consecuencia, se ha propuesto que las alteraciones de la plasticidad sináptica tienen un papel crítico en la fisiopatología del trastorno. Entre los genes que confluyen en vías del neurodesarrollo y de plasticidad sináptica, hay genes que participan en vías de señalización implicadas en la homeostasis neuronal, el desarrollo de las espinas dendríticas y la excitabilidad neural, como el KCNH2, el DISC1, el CACNA1C y el ZNF804A, todos ellos previamente asociados con el riesgo para la esquizofrenia. Además, aproximaciones evolutivas han identificado regiones que han acumulado cambios específicamente humanos desde la divergencia con los chimpancés, como las Regiones Humanas Aceleradas (o Human Accelerated Regions, HARs en inglés). Estas regiones actúan como elementos reguladores de la transcripción otorgando características únicas al neurodesarrollo humano, y albergan variantes genéticas de susceptibilidad para la esquizofrenia. Para facilitar la identificación de los mecanismo genéticos y biológicos implicados en la etiología del trastorno, el uso de fenotipos cerebrales intermedios, como medidas de neuroimagen funcional y estructural, es una herramienta de gran valor. Siguiendo dos aproximaciones centradas en el análisis de los correlatos genético- fenotípicos entre genes candidatos relacionados con la plasticidad sináptica y secuencias HARs y las alteraciones cerebrales en la esquizofrenia, esta tesis incluye cuatro artículos originales y una revisión sistemática. En estos artículos, exponemos el efecto de polimorfismos en los genes KCNH2, DISC1, CACNA1C y ZNF804A y la carga poligénica en conjuntos informativos de HARs sobre las diferencias observadas entre cerebros sanos y cerebros con esquizofrenia. En su conjunto, los resultados validan la efectividad de los fenotipos de neuroimagen para identificar los mecanismos genéticos de la esquizofrenia y ponen de manifiesto la complementariedad de las aproximaciones centradas tanto en genes candidatos como en la variabilidad global del genoma para estudiar la arquitectura genética del trastorno. Primero describimos el papel de la variabilidad genética de los genes KCNH2 y DISC1 en la modulación de la respuesta funcional a la atención y la memoria de trabajo de manera condicional al diagnóstico. Además, identificamos que la epistasis entre dos genes asociados con la esquizofrenia a nivel de GWAS, el CACNAC1C y el ZNF804A, influye en la capacidad funcional de cerebro para adaptarse al incremento de requerimientos cognitivos en memoria de trabajo tanto en controles sanos como en pacientes con esquizofrenia. En segundo lugar, ofrecemos una revisión sobre cómo las HARs sustentan las características del neurodesarrollo humano, la configuración y el funcionamiento cerebral y la susceptibilidad para trastornos psiquiátricos. Así mismo, informamos del efecto modulador de la poligenicidad de las HARs sobre las diferencias en la arquitectura cortical en la esquizofrenia y proporcionamos evidencias sobre la especial relevancia de las HARs asociadas con elementos reguladores de la transcripción activos durante la etapa fetal. De manera global, los resultados de esta tesis indican que los fundamentos etiológicos de la esquizofrenia están relacionados con diferencias genéticas individuales que impactan en las trayectorias del neurodesarrollo y en las vías de plasticidad sináptica, así como en la composición genética que nos define como especie. Esta tesis aporta una gota en el océano del conocimiento sobre los trastornos intrínsicamente vinculados a la condición humana y ha pretendido contribuir en la comprensión de las características únicas de nuestro cerebro para ayudar a entender qué quiere decir ser humano

    An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain

    Get PDF
    ZNF804A, a genomewide supported susceptibility gene for schizophrenia and bipolar disorder, has been associated with task-independent functional connectivity between the left and right dorsolateral prefrontal cortices. Several lines of evidence have converged on the hypothesis that this effect may be mediated by structural connectivity. We tested this hypothesis using diffusion tensor magnetic resonance imaging in three samples: one German sample of 50 healthy individuals, one Scottish sample of 83 healthy individuals and one Scottish sample of 84 unaffected relatives of bipolar patients. Voxel-based analysis and tract-based spatial statistics did not detect any fractional anisotropy (FA) differences between minor allele carriers and individuals homozygous for the major allele at rs1344706. Similarly, region-of-interest analyses and quantitative tractography of the genu of the corpus callosum revealed no significant FA differences between the genotype groups. Examination of effect sizes and confidence intervals indicated that this negative finding is very unlikely to be due to a lack of statistical power. In summary, despite using various analysis techniques in three different samples, our results were strikingly and consistently negative. These data therefore suggest that it is unlikely that the effects of genetic variation at rs1344706 on functional connectivity are mediated by structural integrity differences in large, long-range white matter fiber connections

    Analysis of the impact of synaptic plasticity genes and Human Accelerated Regions on brain function and structure: from the healthy brain to schizophrenia

    Get PDF
    Programa de Doctorat en Biodiversitat / Tesi realitzada a FIDMAG Germanes Hospitalàries Research Foundation[eng] Schizophrenia is a severe psychiatric disorder affecting around 24 million people worldwide. While we begin to disentangle the biological actors implicated in the origin of the disorder, the precise aetiological mechanisms remain largely unknown. Therefore, psychiatry research efforts still need to focus on a better understanding of the complex biological foundations of the disorder to achieve more precise diagnoses and the development of novel therapeutic strategies improving the patients’ quality of life. The prevailing etiopathological hypothesis considers that schizophrenia originates from the interplay between subtle genetic and environmental insults that disrupt the perfectly orchestrated mechanisms guiding neurodevelopment. Additionally, from an evolutionary perspective, it is suggested that schizophrenia represents a costly trade-off in the evolution of human-specific ontogenic neurodevelopmental processes sustaining the inherent complexity and variability of brain functioning, cognition, and behaviour. Along the neurodevelopmental process, the synapse formation and the organisation and maturation of neural circuits anchor the emergence of distinctive human cortical brain functions. In turn, multidisciplinary evidence indicates that synaptic alterations participate in brain dysfunctions, eventually leading to the emergence of the symptoms and cognitive deficits of schizophrenia. Accordingly, it is suggested that synaptic plasticity impairments play a critical role in the pathophysiology of the disorder. Among genes converging in neurodevelopmental and synaptic plasticity pathways, there are genes mediating signalling pathways involved in neural homeostasis, dendritic spine development and neural excitability, such as KCNH2, DISC1, CACNA1C and ZNF804A, all of them previously associated with the risk for schizophrenia. Moreover, evolutionary approaches have identified regions that accumulated human-specific changes since the divergence from chimpanzees, like Human Accelerated Regions (HARs). These regions act as transcriptional regulatory elements that endow human neurodevelopment with unique characteristics and harbour schizophrenia genetic susceptibility variants. To facilitate the identification of the genetic and biological mechanisms involved in schizophrenia aetiology, the use of brain-based intermediate phenotypes is a valuable strategy. Following two approaches centred on the genetic-phenotypic correlates of synaptic plasticity candidate genes and HARs sequences in the brain-based alterations in schizophrenia, this thesis includes four original articles and one systematic review. In these articles, we report the effect of common polymorphisms in KCNH2, DISC1, CACNA1C and ZNF804A genes and the polygenic load of HARs-informative sets on the differences observed between healthy brains and brains with schizophrenia. Overall, the results validate the efficacy of neuroimaging phenotypes to identify the genetic determinants of schizophrenia and point out the complementarity of candidate genes and genome-wide approaches in the study of the genetic architecture of the disorder. First, we describe the role of KCNH2 and DISC1 genetic variability in modulating the attentional and working memory-related functional responses in a diagnosis- dependent manner. Furthermore, we identify that the epistasis between two schizophrenia GWAS-associated genes, CACNAC1C and ZNF804A, influence the functional ability to adapt to increased working memory difficulty euqally in healthy controls and patients with schizophrenia. Second, we present a review of how HARs underlie human neurodevelopmental signatures, brain configuration, functioning and susceptibility behind psychiatric disorders. Likewise, we report the modulatory effect of HARs polygenicity on brain cortical architectural differences in schizophrenia and provide evidence on the importance of foetal-active regulatory HARs in patients' cortical surface area variability. Globally, the findings exposed in this thesis point towards the fact that the aetiological foundations of schizophrenia are related to the individual genetic differences altering neurodevelopment and synaptic plasticity trajectories but also to the genomic make-up that defines us as a species. This thesis provides a drop in the ocean of knowledge on disorders inherently linked to the human condition and has sought to comprehend the unique characteristics of our brain to help unravel what it means to be human.[cat] L’esquizofrènia és un trastorn neuropsiquiàtric greu que afecta a 24 milions de persones a tot el món. Tot i que comencem a conèixer els mecanismes biològics implicats en l’origen del trastorn, els processos etiològics precisos continuen essent en gran part desconeguts. Per tant, els esforços en la recerca encara necessiten dirigir-se en millorar el coneixement dels fonaments biològics del trastorn, per tal d’aconseguir un diagnòstic més precís i el desenvolupament de noves estratègies terapèutiques que millorin la qualitat de vida dels pacients. La hipòtesi etiopatogènica predominant considera que el trastorn s’origina a partir de la interacció entre factors genètics i ambientals que pertorben els mecanismes perfectament orquestrats que guien el neurodesenvolupament. A més, des d’una perspectiva evolutiva, s’ha suggerit que l’esquizofrènia representaria el “preu a pagar” per evolució dels processos ontogènics específicament humans que sustenten la complexitat i la variabilitat inherent al funcionament del cervell, la cognició i el comportament de la nostra espècie. Al llarg del neurodevenvolupament, la formació de sinapsis i l’organització i maduració dels circuits neurals ancoren l’aparició de funcions cerebrals corticals distintivament humanes. Al seu torn, evidències multidisciplinàries indiquen que les alteracions sinàptiques participen en disfuncions cerebrals que tenen com a resultat l’aparició dels símptomes cognitius i clínics de l’esquizofrènia. En conseqüència, s’ha proposat que les alteracions de la plasticitat sinàptica tenen un paper crític en la fisiopatologia del trastorn. Entre els gens que conflueixen en vies del neurodesenvolupament i de plasticitat sinàptica, hi ha gens que participen en vies de senyalització implicades en l’homeòstasi neuronal, el desenvolupament de les espines dendrítiques i l’excitabilitat neuronal, com els gens KCNH2, el DISC1, el CACNA1C i el ZNF804A, tots prèviament associats amb el risc per a l’esquizofrènia. A més, aproximacions evolutives han identificat regions que han acumulat canvis específicament en humans des de la divergència amb els ximpanzés, com les Regions Humanes Accelerades (o Human Accelerated Regions, HARs en anglès). Aquestes regions actuen com a elements reguladors de la transcripció atorgant característiques úniques al neurodesenvolupament humà, i contenen variants genètiques de susceptibilitat per a l’esquizofrènia. Per tal de facilitar l’identificar els mecanismes genètics i biològics implicats en l’etiologia de l’esquizofrènia, la utilització de fenotips cerebrals intermedis, com mesures de neuroimatge funcional i estructural, representa una estratègia molt útil. Seguint dues aproximacions centrades en l’anàlisi dels correlats genètics-fenotípics entre gens candidats relacionats amb la plasticitat sinàptica i regions HARs i les alteracions cerebrals de l’esquizofrènia, aquesta tesi inclou quatre articles originals i una revisió sistemàtica. En aquests articles, exposem l’efecte de polimorfismes en els gens KCNH2, DISC1, CACNA1C i ZNF804A i la càrrega poligènica en conjunts informatius de HARs sobre les diferències observades entre cervells de persones sanes i persones amb esquizofrènia. En conjunt, els resultats validen l’efectivitat dels fenotips de neuroimatge per identificar els determinants genètics de l’esquizofrènia i posen de manifest la complementarietat de les aproximacions centrades tant en gens candidats com en la variabilitat global del genoma per a l’estudi de l’arquitectura genètica del trastorn. Primer, descrivim el paper de la variabilitat genètica dels genes KCNH2 i DISC1 en la modulació de la resposta funcional a l’atenció i la memòria de treball de manera condicionada al diagnòstic. També, identifiquem que l’epistasi entre dos gens associats amb l’esquizofrènia a nivell de GWAS, el CACNAC1C i el ZNF804A, influeix en la capacitat funcionalde cervell per adaptar-se a l’increment de requeriments cognitius en memòria de treball en controls sans i pacients amb esquizofrènia. En segon lloc, oferim una revisió sobre com les HARs sustenten les característiques del neurodesenvolupament humà, la configuració cerebral, el funcionament i la susceptibilitat per als trastorns psiquiàtrics Així mateix, informem de l'efecte modulador de la poligenicitat de les HARs sobre les diferències en l’arquitectura cortical en l'esquizofrènia i proporcionem evidències sobre l’especial rellevància de les HARs associades amb elements reguladors de la transcripció actius durant l’etapa fetal. De manera global, els resultats d’aquesta tesi indiquen que els fonaments etiològics de l’esquizofrènia estan relacionats amb diferències genètiques individuals que impacten en les trajectòries del neurodesenvolupament i les vies de plasticitat sinàptica, així com amb la composició genòmica que ens defineix com a espècie. Aquesta tesi aporta una gota en l’oceà del coneixement sobre els trastorns intrínsecament vinculats a la condició humana i ha pretès contribuir en la comprensió de les característiques úniques del nostre cervell per ajudar a entendre què vol dir ser humà.[spa] La esquizofrenia es un trastorno psiquiátrico que afecta a 24 millones de personas en todo el mundo. A pesar de que empezamos a conocer los mecanismos biológicos implicados en el origen del trastorno, los procesos etiológicos precisos continúan siendo en gran parte desconocidos. Por ello, los esfuerzos investigadores todavía necesitan dirigirse en mejorar el conocimiento de los fundamentos biológicos del trastorno, para así conseguir una mayor precisión en el diagnóstico y desarrollar nuevas estrategias terapéuticas que mejoren la calidad de vida de los pacientes. La hipótesis etiopatogénica predominante considera que el trastorno se origina de la interacción entre factores genéticos y ambientales que modifican los mecanismos perfectamente orquestados que guían el neurodesarrollo. Además, desde una perspectiva evolutiva, se sostiene que la esquizofrenia representa “el precio a pagar” por la evolución de los procesos ontogénicos específicamente humanos que sustentan la complejidad y la variabilidad inherente al funcionamiento del cerebro, así como la cognición y comportamiento de nuestra especie. A lo largo del neurodesarrollo, la formación de sinapsis y la organización y maduración de los circuitos neurales anclan la aparición de funciones cerebrales corticales distintivamente humanas. Por su parte, evidencias multidisciplinares indican que las alteraciones sinápticas participan en disfunciones cerebrales asociadas a la aparición de los síntomas cognitivos y clínicos de la esquizofrenia. En consecuencia, se ha propuesto que las alteraciones de la plasticidad sináptica tienen un papel crítico en la fisiopatología del trastorno. Entre los genes que confluyen en vías del neurodesarrollo y de plasticidad sináptica, hay genes que participan en vías de señalización implicadas en la homeostasis neuronal, el desarrollo de las espinas dendríticas y la excitabilidad neural, como el KCNH2, el DISC1, el CACNA1C y el ZNF804A, todos ellos previamente asociados con el riesgo para la esquizofrenia. Además, aproximaciones evolutivas han identificado regiones que han acumulado cambios específicamente humanos desde la divergencia con los chimpancés, como las Regiones Humanas Aceleradas (o Human Accelerated Regions, HARs en inglés). Estas regiones actúan como elementos reguladores de la transcripción otorgando características únicas al neurodesarrollo humano, y albergan variantes genéticas de susceptibilidad para la esquizofrenia. Para facilitar la identificación de los mecanismo genéticos y biológicos implicados en la etiología del trastorno, el uso de fenotipos cerebrales intermedios, como medidas de neuroimagen funcional y estructural, es una herramienta de gran valor. Siguiendo dos aproximaciones centradas en el análisis de los correlatos genético- fenotípicos entre genes candidatos relacionados con la plasticidad sináptica y secuencias HARs y las alteraciones cerebrales en la esquizofrenia, esta tesis incluye cuatro artículos originales y una revisión sistemática. En estos artículos, exponemos el efecto de polimorfismos en los genes KCNH2, DISC1, CACNA1C y ZNF804A y la carga poligénica en conjuntos informativos de HARs sobre las diferencias observadas entre cerebros sanos y cerebros con esquizofrenia. En su conjunto, los resultados validan la efectividad de los fenotipos de neuroimagen para identificar los mecanismos genéticos de la esquizofrenia y ponen de manifiesto la complementariedad de las aproximaciones centradas tanto en genes candidatos como en la variabilidad global del genoma para estudiar la arquitectura genética del trastorno. Primero describimos el papel de la variabilidad genética de los genes KCNH2 y DISC1 en la modulación de la respuesta funcional a la atención y la memoria de trabajo de manera condicional al diagnóstico. Además, identificamos que la epistasis entre dos genes asociados con la esquizofrenia a nivel de GWAS, el CACNAC1C y el ZNF804A, influye en la capacidad funcional de cerebro para adaptarse al incremento de requerimientos cognitivos en memoria de trabajo tanto en controles sanos como en pacientes con esquizofrenia. En segundo lugar, ofrecemos una revisión sobre cómo las HARs sustentan las características del neurodesarrollo humano, la configuración y el funcionamiento cerebral y la susceptibilidad para trastornos psiquiátricos. Así mismo, informamos del efecto modulador de la poligenicidad de las HARs sobre las diferencias en la arquitectura cortical en la esquizofrenia y proporcionamos evidencias sobre la especial relevancia de las HARs asociadas con elementos reguladores de la transcripción activos durante la etapa fetal. De manera global, los resultados de esta tesis indican que los fundamentos etiológicos de la esquizofrenia están relacionados con diferencias genéticas individuales que impactan en las trayectorias del neurodesarrollo y en las vías de plasticidad sináptica, así como en la composición genética que nos define como especie. Esta tesis aporta una gota en el océano del conocimiento sobre los trastornos intrínsicamente vinculados a la condición humana y ha pretendido contribuir en la comprensión de las características únicas de nuestro cerebro para ayudar a entender qué quiere decir ser humano

    Genetics, sleep and memory:a recall-by-genotype study of ZNF804A variants and sleep neurophysiology

    Get PDF
    © 2015 Hellmich et al.Background: Schizophrenia is a complex, polygenic disorder for which over 100 genetic variants have been identified that correlate with diagnosis. However, the biological mechanisms underpinning the different symptom clusters remain undefined. The rs1344706 single nucleotide polymorphism within ZNF804A was among the first genetic variants found to be associated with schizophrenia. Previously, neuroimaging and cognitive studies have revealed several associations between rs1344706 and brain structure and function. The aim of this study is to use a recall-by-genotype (RBG) design to investigate the biological basis for the association of ZNF804A variants with schizophrenia. A RBG study, implemented in a population cohort, will be used to evaluate the impact of genetic variation at rs1344706 on sleep neurophysiology and procedural memory consolidation in healthy participants. Methods/Design: Participants will be recruited from the Avon Longitudinal Study of Parents and Children (ALSPAC) on the basis of genotype at rs1344706 (n = 24). Each participant will be asked to take part in two nights of in-depth sleep monitoring (polysomnography) allowing collection of neurophysiological sleep data in a manner not amenable to large-scale study. Sleep questionnaires will be used to assess general sleep quality and subjective sleep experience after each in-house recording. A motor sequencing task (MST) will be performed before and after the second night of polysomnography. In order to gather additional data about habitual sleep behaviour participants will be asked to wear a wrist worn activity monitor (actiwatch) and complete a sleep diary for two weeks. Discussion: This study will explore the biological function of ZNF804A genotype (rs1344706) in healthy volunteers by examining detailed features of sleep architecture and physiology in relation to motor learning. Using a RBG approach will enable us to collect precise and detailed phenotypic data whilst achieving an informative biological gradient. It would not be feasible to collect such data in the large sample sizes that would be required under a random sampling scheme. By dissecting the role of individual variants associated with schizophrenia in this way, we can begin to unravel the complex genetic mechanisms of psychiatric disorders and pave the way for future development of novel therapeutic approaches

    Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation

    Get PDF
    © The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.Background: Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. Methods: A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. Results: We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). Conclusions: Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.VT was supported by a Fundação para a Ciência e Tecnologia (FCT) PhD fellowship (PD/BD/114460/2016) and hired on the FCT DSAIPA/DS/0065/2018 grant. DP was supported, during this work, by the European Commission Seventh Framework Programme Marie Curie Career Integration Grant FP7-PEOPLE-2013-CIG-631952, the 2016 Bial Foundation Psychophysiology Grant – Ref. 292/16, and the FCT IF/00787/2014, LISBOA-01-0145-FEDER-030907, DSAIPA/DS/0065/2018 and UIDB/00645/2020 grants, and the Instituto de Medicina Molecular (iMM) Lisboa Director's Fund Breakthrough Idea Grant 2016.info:eu-repo/semantics/publishedVersio
    corecore