3 research outputs found

    A Survey on Data Perception in Cognitive Internet of Things, Journal of Telecommunications and Information Technology, 2019, nr 3

    Get PDF
    A Cognitive Internet of Things (CIoT) is a brand of Internet of Things (IoT) with cognitive and agreeable mechanisms, which are incorporated to advance performance and accomplish insights into real world environments. CIoT can perceive present system’s conditions, analyze the apparent information, make smart choices, and increase the network performance. In this survey paper, we present classifications of data perception techniques used in CIoT. This paper also compares the data perception works against energy consumption, network life-time, resource allocation, and throughput, as well as quality of data and delay. In addition, simulation tools for IoT and their performance are discussed. Finally, we provide the model of cognitive agent-based data perception in CIoT for future research and development, which ensures the network performance in terms of reliability, energy efficient, accuracy, scalable, fault tolerant, and quality of data

    Building a Simple Smart Factory

    Get PDF
    This thesis describes (a) the search and findings of smart factories and their enabling technologies (b) the methodology to build or retrofit a smart factory and (c) the building and operation of a simple smart factory using the methodology. A factory is an industrial site with large buildings and collection of machines, which are operated by persons to manufacture goods and services. These factories are made smart by incorporating sensing, processing, and autonomous responding capabilities. Developments in four main areas (a) sensor capabilities (b) communication capabilities (c) storing and processing huge amount of data and (d) better utilization of technology in management and further development have contributed significantly for this incorporation of smartness to factories. There is a flurry of literature in each of the above four topics and their combinations. The findings from the literature can be summarized in the following way. Sensors detect or measure a physical property and records, indicates, or otherwise responds to it. In real-time, they can make a very large amount of observations. Internet is a global computer network providing a variety of information and communication facilities and the internet of things, IoT, is the interconnection via the Internet of computing devices embedded in everyday objects, enabling them to send and receive data. Big data handling and the provision of data services are achieved through cloud computing. Due to the availability of computing power, big data can be handled and analyzed under different classifications using several different analytics. The results from these analytics can be used to trigger autonomous responsive actions that make the factory smart. Having thus comprehended the literature, a seven stepped methodology for building or retrofitting a smart factory was established. The seven steps are (a) situation analysis where the condition of the current technology is studied (b) breakdown prevention analysis (c) sensor selection (d) data transmission and storage selection (e) data processing and analytics (f) autonomous action network and (g) integration with the plant units. Experience in a cement factory highlighted the wear in a journal bearing causes plant stoppages and thus warrant a smart system to monitor and make decisions. The experience was used to develop a laboratory-scale smart factory monitoring the wear of a half-journal bearing. To mimic a plant unit a load-carrying shaft supported by two half-journal bearings were chosen and to mimic a factory with two plant units, two such shafts were chosen. Thus, there were four half-journal bearings to monitor. USB Logitech C920 webcam that operates in full-HD 1080 pixels was used to take pictures at specified intervals. These pictures are then analyzed to study the wear at these intervals. After the preliminary analysis wear versus time data for all four bearings are available. Now the ‘making smart activity’ begins. Autonomous activities are based on various analyses. The wear time data are analyzed under different classifications. Remaining life, wear coefficient specific to the bearings, weekly variation in wear and condition of adjacent bearings are some of the characteristics that can be obtained from the analytics. These can then be used to send a message to the maintenance and supplies division alerting them on the need for a replacement shortly. They can also be alerted about other bearings reaching their maturity to plan a major overhaul if needed

    Compound popular content caching strategy to enhance the cache management performance in named data networking

    Get PDF
    Named Data Networking (NDN) is a leading research paradigm for the future Internet architecture. The NDN offers in-network cache which is the most beneficial feature to reduce the difficulties of the location-based Internet paradigm. The objective of cache is to achieve a scalable, effective, and consistent distribution of information. However, the main issue which NDN facing is the selection of appropriate router during the content’s transmission that can disrupt the overall network performance. The reason is that how each router takes a decision to the cache which content needs to cache at what location that can enhance the complete caching performance. Therefore, several cache management strategies have been developed. Still, it is not clear which caching strategy is the most ideal for each situation. This study proposes a new cache management strategy named as Compound Popular Content Caching Strategy (CPCCS) to minimize cache redundancy with enhanced diversity ratio and improving the accessibility of cached content by providing short stretch paths. The CPCCS was developed by combining two mechanisms named as Compound Popular Content Selection (CPCS) and Compound Popular Content Caching (CPCC) to differentiate the contents regarding their Interest frequencies using dynamic threshold and to find the best possible caching positions respectively. CPCCS is compared with other NDN-based caching strategies, such as Max-Gain In-network Caching, WAVE popularity-based caching strategy, Hop-based Probabilistic Caching, Leaf Popular Down, Most Popular Cache, and Cache Capacity Aware Caching in a simulation environment. The results show that the CPCCS performs better in which the diversity and cache hit ratio are increased by 34% and 14% respectively. In addition, the redundancy and path stretch are decreased by 44% and 46% respectively. The outcomes showed that the CPCCS have achieved enhanced caching performance with respect to different cache size (1GB to 10GB) and simulation parameters than other caching strategies. Thus, CPCCS can be applicable in future for the NDN-based emerging technologies such as Internet of Things, fog and edge computing
    corecore