79,275 research outputs found

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Revisiting the Importance of Cognition in Information Science

    Get PDF
    DOI: 10.1177/016555150000000For a considerable amount of time the field of information science has employed its own, as well as the knowledge bases and methods of other fields (with productive results). One field that has been appropriated from has been cognitive science. Cognitive science, however, has been in flux over the last few decades, with different conceptual frameworks assuming ascendance at various times. That dynamic implies that information science should pay close attention to what is occurring in cognitive science in order to investigate the most complex of challenges in information retrieval use, behaviour, and other phenomena. This paper includes a review of the frameworks of cognitive science and suggests that some of the most recent work in that field holds promise for development of thought and inquiry in information science. Understanding of the complex individual processes within human brains, the relationships among thinking communicators, and the relationship of brain and mind, is one of the areas where particular attention should be paid

    Electrophysiological evidence for flexible goal-directed cue processing during episodic retrieval

    Get PDF
    A widely held assumption is that memory retrieval is aided by cognitive control processes that are engaged flexibly in service of memory retrieval and memory decisions. While there is some empirical support for this view, a notable exception is the absence of evidence for the flexible use of retrieval control in functional neuroimaging experiments requiring frequent switches between tasks with different cognitive demands. This absence is troublesome in so far as frequent switches between tasks mimic some of the challenges that are typically placed on memory outside the laboratory. In this experiment we instructed participants to alternate frequently between three episodic memory tasks requiring item recognition or retrieval of one of two different kinds of contextual information encoded in a prior study phase (screen location or encoding task). Event-related potentials (ERPs) elicited by unstudied items in the two tasks requiring retrieval of study context were reliably different, demonstrating for the first time that ERPs index task-specific processing of retrieval cues when retrieval goals change frequently. The inclusion of the item recognition task was a novel and important addition in this study, because only the ERPs elicited by unstudied items in one of the two context conditions diverged from those in the item recognition condition. This outcome constrains functional interpretations of the differences that emerged between the two context conditions and emphasises the utility of this baseline in functional imaging studies of retrieval processing operations

    A brief period of sleep deprivation negatively impacts the acquisition, consolidation, and retrieval of object-location memories

    Get PDF
    Memory is a cognitive concept and refers to the storage of information over a longer time period. It exists of a series of complementary processes; acquisition, consolidation, and retrieval. Each of these processes has its own partly unique neurobiological signature. Sleep deprivation is known to impair hippocampus-dependent long-term memories. Many studies have used extended periods of wakefulness, affecting all three memory processes, thereby making it unable to determine how each of the processes is affected by sleep loss, separately. Others have extensively examined the effects on memory consolidation, showing the detrimental effect of sleep deprivation during the consolidation process on memory formation. Few studies have investigated how memory acquisition and its retrieval are affected by sleep loss. In the present study, we therefore assessed in mice how sleep deprivation negatively impacts memory acquisition, consolidation, and retrieval, in the Object Location Memory task. Mice were sleep deprived for six hours at the beginning of the light phase using the gentle handling method, 1) directly preceding the learning trial (acquisition), 2) immediately after the learning trial (consolidation), or 3) directly preceding the test trial (retrieval). Memory was assessed at either a 24-h or 1-h interval. Using this approach, we show for the first time that six hours of sleep deprivation attenuates the acquisition, consolidation, and retrieval of object-location memories in mice

    The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing

    Get PDF
    The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation, and retrieval) are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval
    corecore