946 research outputs found

    Adaptive threshold PCA for fault detection and isolation

    Get PDF
    Fault diagnosis is an important issue in industrial processes to avoid economic losses, process damage, and to guarantee safe working conditions for the operators. For high scale industrial processes the data-driven based methods are the best solution for process monitoring and fault diagnosis. Thus, in this paper, the principal component analysis is shown to detect and isolate faults. Also, a dynamic threshold is implemented to avoid false alarms because incipient faults are difficult to be detected. As a case of study, the Tennessee Eastman (TE) process is used to apply this strategy because the interaction among five units with internal control loops makes difficult to have an approached model. As results are shown the detection times, for cases where were analyzed incipient faults, the time required for fault detection must be improved, in this work, an adaptive threshold was used to reduce the false alarms but it also increases the detection times. It was concluded that the Q chart gave a better result for fault detection; the isolation times were similar to the detection ones. Two incipient faults could not be detected, the fault detection rate was similar to the shown in literature, but the detection times were better in 35% of the cases, unfortunately for four faults the detection times were bigger than the reported in other papers. It is proposed to help this method with independent component analysis due it is not guaranteed to have a Gaussian distribution in the samples

    SensorSCAN: Self-Supervised Learning and Deep Clustering for Fault Diagnosis in Chemical Processes

    Full text link
    Modern industrial facilities generate large volumes of raw sensor data during the production process. This data is used to monitor and control the processes and can be analyzed to detect and predict process abnormalities. Typically, the data has to be annotated by experts in order to be used in predictive modeling. However, manual annotation of large amounts of data can be difficult in industrial settings. In this paper, we propose SensorSCAN, a novel method for unsupervised fault detection and diagnosis, designed for industrial chemical process monitoring. We demonstrate our model's performance on two publicly available datasets of the Tennessee Eastman Process with various faults. The results show that our method significantly outperforms existing approaches (+0.2-0.3 TPR for a fixed FPR) and effectively detects most of the process faults without expert annotation. Moreover, we show that the model fine-tuned on a small fraction of labeled data nearly reaches the performance of a SOTA model trained on the full dataset. We also demonstrate that our method is suitable for real-world applications where the number of faults is not known in advance. The code is available at https://github.com/AIRI-Institute/sensorscan

    A multi-category decision support framework for the Tennessee Eastman problem

    Get PDF
    The paper investigates the feasibility of developing a classification framework, based on support vector machines, with the correct properties to act as a decision support system for an industrial process plant, such as the Tennessee Eastman process. The system would provide support to the technicians who monitor plants by signalling the occurrence of abnormal plant measurements marking the onset of a fault condition. To be practical such a system must meet strict standards, in terms of low detection latency, a very low rate of false positive detection and high classification accuracy. Experiments were conducted on examples generated by a simulation of the Tennessee Eastman process and these were preprocessed and classified using a support vector machine. Experiments also considered the efficacy of preprocessing observations using Fisher Discriminant Analysis and a strategy for combining the decisions from a bank of classifiers to improve accuracy when dealing with multiple fault categories

    ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ•™์Šต ๋ฐ ์ถ”๋ก ๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2019. 2. ์ด์›๋ณด.Fault detection and diagnosis (FDD) is an essential part of safe plant operation. Fault detection refers to the process of detecting the occurrence of a fault quickly and accurately, and representative methods include the use of principal component analysis (PCA), and autoencoders (AE). Fault diagnosis is the process of isolating the root cause node of the fault, then determining the fault propagation path to identify the characteristic of the fault. Among the various methods, data-driven methods are the most widely-used, due to their applicability and good performance compared to analytical and knowledge-based methods. Although many studies have been conducted regarding FDD, no methodology for conducting every step of FDD exists, where the fault is effectively detected and diagnosed. Moreover, existing methods have limited applicability and show limited performance. Previous fault detection methods show loss of variable characteristics in dimensionality reduction methods and have large computational loads, leading to poor performance for complex faults. Likewise, preceding fault diagnosis methods show inaccurate fault isolation results, and biased fault propagation path analysis as a consequence of implementing knowledge-based characteristics for construction of digraphs of process variable relationships. Thus a comprehensive methodology for FDD which shows good performance for complex faults and variable relationships, is required. In this study, an efficient and effective comprehensive FDD methodology based on Markov random fields (MRF) modelling is proposed. MRFs provide an effective means for modelling complex variable relationships, and allows efficient computation of marginal probability of the process variables, leading to good performance regarding FDD. First, a fault detection framework for process variables, integrating the MRF modelling and structure learning with iterative graphical lasso is proposed. Graphical lasso is an algorithm for learning the structure of MRFs, and is applicable to large variable sets since it approximates the MRF structure by assuming the relationships between variables to be Gaussian. By iteratively applying the graphical lasso to monitored variables, the variable set is subdivided into smaller groups, and consequently the computational cost of MRF inference is mitigated allowing efficient fault detection. After variable groups are obtained through iterative graphical lasso, they are subject to the MRF monitoring framework that is proposed in this work. The framework obtains the monitoring statistics by calculating the probability density of the variable groups through kernel density estimation, and the monitoring limits are obtained separately for each group by using a false alarm rate of 5%. Second, a fault isolation and propagation path analysis methodology is proposed, where the conditional marginal probability of each variable is computed via inference, then is used to calculate the conditional contribution of individual variables during the occurrence of a fault. Using the kernel belief propagation (KBP) algorithm, which is an algorithm for learning and inferencing MRFs comprising continuous variables, the parameters of MRF are trained using normal process data, then the individual conditional contribution of each variable is calculated for every sample of the fault process data. By analyzing the magnitude and reaction speed of the conditional contribution of individual variables, the root fault node can be isolated and the fault propagation path can be determined effectively. Finally, the proposed methodology is verified by applying it to the well-known Tennessee Eastman process (TEP) model. Since the TEP has been used as a benchmark process over the past years for verifying various FDD methods, it serves the purpose of performance comparison. Also, since it consists of multiple units and has complex variable relationships such as recycle loops, it is suitable for verifying the performance of the proposed methodology. Application results show that the proposed methodology performs better compared to state-of-the-art FDD algorithms, in terms of both fault detection and diagnosis. Fault detection results showed that all 28 faults designed inside the TEP model were detected with a fault detection accuracy of over 95%, which is higher than any other previously proposed fault detection method. Also, the method showed good fault isolation and propagation path analysis results, where the root-cause node for every fault was detected correctly, and the characteristics of the initiated faults were identified through fault propagation path analysis.๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์‹œ์Šคํ…œ์€ ์•ˆ์ „ํ•œ ๊ณต์ • ์šด์˜์— ํ•„์ˆ˜์ ์ธ ๋ถ€๋ถ„์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€๋Š” ์ด์ƒ์ด ๋ฐœ์ƒํ–ˆ์„ ๊ฒฝ์šฐ ์ฆ‰๊ฐ์ ์œผ๋กœ ์ด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฃผ์„ฑ๋ถ„ ๋ถ„์„ ๋ฐ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ™œ์šฉํ•œ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์€ ๊ฒฐํ•จ์˜ ๊ทผ๋ณธ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ๊ฒฉ๋ฆฌํ•˜๊ณ , ์ด์ƒ์˜ ์ „ํŒŒ ๊ฒฝ๋กœ๋ฅผ ํƒ์ง€ํ•˜์—ฌ ์ด์ƒ์˜ ํŠน์„ฑ์„ ์‹๋ณ„ํ•˜๋Š” ํ”„๋กœ์„ธ์Šค์ด๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์—๋Š” ๋ชจ๋ธ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก , ์ง€์‹ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก  ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ์žˆ์ง€๋งŒ, ๊ณต์ •์— ๋Œ€ํ•œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ์œ ์šฉํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ์—ฐ๊ตฌ๋˜์–ด ์™”์ง€๋งŒ, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ์†Œ์ˆ˜์— ๋ถˆ๊ณผํ•˜๋ฉฐ, ์กด์žฌํ•˜๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ๋“ค ์—ญ์‹œ ๋‘ ๋ถ„์•ผ ๋ชจ๋‘์—์„œ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋Š” ๊ฒฝ์šฐ๋Š” ์—†๋‹ค. ์ด๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ์ œํ•œ๋˜์–ด ์žˆ์œผ๋ฉฐ ๊ณต์ •์— ์ ์šฉ์‹œ ์ œํ•œ๋œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด์ƒ ๊ฐ์ง€์˜ ๊ฒฝ์šฐ, ๋Œ€์šฉ๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณผ๋ถ€ํ•˜๋กœ ์ธํ•œ ๊ฐ์ง€ ๋Šฅ๋ ฅ์˜ ์ €ํ•˜, ์ฐจ์› ์ถ•์†Œ ๋ฐฉ๋ฒ•๋ก ๋“ค์„ ์‚ฌ์šฉํ•  ์‹œ ์ด์— ๋”ฐ๋ฅธ ๋ณ€์ˆ˜ ํŠน์„ฑ ๋ฐ˜์˜์˜ ๋ถ€์ •ํ™•์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ถ•์†Œ๋œ ์ฐจ์›์—์„œ์˜ ๊ณ„์‚ฐ์œผ๋กœ ์ธํ•˜์—ฌ ๋ณตํ•ฉ์ ์ธ ํ˜•ํƒœ์˜ ์ด์ƒ์„ ๊ฐ์ง€ํ•ด ๋‚ด์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ ๋“ฑ์ด ์žˆ๋‹ค. ์ด์ƒ ์ง„๋‹จ์˜ ๊ฒฝ์šฐ ์ด์ƒ์˜ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ์— ๋Œ€ํ•œ ๋ถ„์„์ด ๋ถ€์ •ํ™•ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€๋ฐ, ์ด๋Š” ์ฐจ์› ์ถ•์†Œ๋กœ ์ธํ•˜์—ฌ ๊ณต์ • ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜๋Š” ์„ฑ์งˆ์ด ์žˆ๊ณ , ๋ฐฉํ–ฅ์„ฑ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•  ์‹œ ๊ณต์ •์— ๋Œ€ํ•œ ์„ ํ–‰ ์ง€์‹์„ ์ ์šฉํ•จ์œผ๋กœ์จ ํŽธํ–ฅ๋œ ์ด์ƒ ์ง„๋‹จ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๋“ค์ด ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋Œ€ํ•œ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ๋“ค์„ ๊ณ ๋ คํ•ด ๋ดค์„๋•Œ, ๋ณ€์ˆ˜ ๊ฐ๊ฐ์˜ ํŠน์„ฑ์ด ์†Œ์‹ค๋˜์ง€ ์•Š๋„๋กํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€์™€ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ์œผ๋ฉด์„œ๋„, ๊ณ„์‚ฐ์ƒ์˜ ํšจ์œจ์„ฑ์„ ๊ฐ–์ถ˜, ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ๊ฐœ๋ฐœ์ด ์‹œ๊ธ‰ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ๋ชจ๋ธ๋ง๊ณผ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ํ†ตํ•ฉ์ ์ธ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ๋น„์„ ํ˜•์ ์ด๊ณ  ๋น„์ •๊ทœ์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๊ณ , ์ด์ƒ ๋ฐœ์ƒ ์ƒํ™ฉ์—์„œ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ํ†ต๊ณ„๊ฐ’ ๊ณ„์‚ฐ์‹œ์— ๊ฐ ๋ณ€์ˆ˜์˜ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์—ฌ ํ™•๋ฅ  ๊ณ„์‚ฐ์„ ํ•ด ๋‚ผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํšจ๊ณผ์ ์ธ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ์ˆ˜๋‹จ์ด ๋œ๋‹ค. ๊ธฐ๋ณธ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋Š” ํ™•๋ฅ ๊ฐ’ ๊ณ„์‚ฐ์‹œ์˜ ๋ถ€ํ•˜๊ฐ€ ํฌ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ๋ผ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ํ•จ๊ป˜ ํ™œ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ ์ƒ์˜ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋‚ด์šฉ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ณต์ • ๋ณ€์ˆ˜๋ฅผ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ˜•ํƒœ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ™œ์šฉํ•ด ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์ธ๋ฐ, ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ฐ€์šฐ์Šค ํ•จ์ˆ˜์˜ ํ˜•ํƒœ๋กœ ๊ฐ€์ •ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค๋ณ€์ˆ˜ ์‹œ์Šคํ…œ์—์„œ๋„ ํšจ์œจ์ ์œผ๋กœ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ์ œ์•ˆํ•˜์—ฌ ๋ชจ๋“  ๊ณต์ • ๋ณ€์ˆ˜๋“ค์ด ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ณ€์ˆ˜ ์ง‘๋‹จ์œผ๋กœ ๋ฌถ์ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ™œ์šฉํ•˜๋ฉด ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜ ์ง‘๋‹จ์„ ๋‹ค์ˆ˜์˜ ์†Œ์ง‘๋‹จ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ๊ฐ์— ๋Œ€ํ•œ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋Š”๋ฐ, ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€์˜ ํšจ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ ํ™•๋ฅ  ๊ณ„์‚ฐ์˜ ๋Œ€์ƒ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์—ฌ์คŒ์œผ๋กœ์จ ๊ณ„์‚ฐ ๋ถ€ํ•˜๋ฅผ ์ค„์ด๊ณ  ํšจ์œจ์ ์ธ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ์ง‘๋‹จ๋ผ๋ฆฌ ๋ฌถ์—ฌ์„œ ๋ชจ๋ธ๋ง ๋œ ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ์˜ ์ง„๋‹จ ๊ณผ์ •์—์„œ ๊ณต์ • ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„ ํŒŒ์•… ๋ฐ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ์šฉ์ดํ•˜๋„๋ก ํ•ด์ค€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ ๊ฐ์ง€๊ฐ€ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง„ ๋‹ค์ˆ˜์˜ ๋ณ€์ˆ˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•˜์—ฌ ๊ฐ๊ฐ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ด์ƒ ๊ฐ์ง€๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ์ปค๋„ ๋ฐ€๋„ ์ถ”์ • ๋ฐฉ๋ฒ•๋ก ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ์ปค๋„ ๋ฐ€๋„์˜ ๋Œ€์—ญํญ์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐœ์ƒํ•  ์‹œ ์ด๋ฅผ ํ™œ์šฉํ•œ ์ปค๋„ ๋ฐ€๋„ ์ถ”์ •๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ํ—ˆ์œ„ ์ง„๋‹จ์œจ์„ 5%๋กœ ๊ฐ€์ •ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์†Œ์ง‘๋‹จ์— ๋Œ€ํ•œ ๊ณต์ • ๊ฐ์ง€ ๊ธฐ์ค€์„ ์„ ์„ค์ •ํ•˜์˜€๊ณ , ์ด์ƒ๊ฐ์‹œ ํ†ต๊ณ„์น˜๊ฐ€ ๊ณต์ • ๊ฐ์‹œ ๊ธฐ์ค€์„ ๋ณด๋‹ค ๋‚ฎ๊ฒŒ ๋  ๊ฒฝ์šฐ ์ด์ƒ์ด ๊ฐ์ง€๋œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ์ด์ƒ ๋ฐœ์ƒ ์‹œ ์›์ธ์ด ๋˜๋Š” ๋ณ€์ˆ˜์˜ ๊ฒฉ๋ฆฌ ๋ฐ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์—์„œ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์˜ ํ™•๋ฅ  ์ถ”๋ก  ๊ณผ์ •์„ ํ™œ์šฉํ•˜์—ฌ ์ด์ƒ ๋ฐœ์ƒ ์‹œ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ํ•œ๊ณ„ ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•ด ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์—ฌ, ์ด์ƒ์— ๋Œ€ํ•œ ๊ฐ ๋ณ€์ˆ˜์˜ ๊ธฐ์—ฌ๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ๋Š” ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ ๋ฐฉ๋ฒ•๋ก ์ด ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ์ด๋Š” ์—ฐ์† ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ์— ๋Œ€ํ•˜์—ฌ ํ™•๋ฅ  ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ปค๋„ ์‹ ๋ขฐ๋„ ์ „ํŒŒ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋ฉด ์ •์ƒ ์ƒํƒœ์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋งˆ๋ฅด์ฝ”ํ”„ ๋žœ๋ค ํ•„๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’๋“ค์„ ํ•™์Šตํ•˜๊ณ , ์ด์ƒ ๋ฐœ์ƒ์‹œ ์ด์ƒ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•˜์—ฌ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด ๋•Œ ๊ณ„์‚ฐ๋œ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ํฌ๊ธฐ์™€, ์ด์ƒ ๋ฐœ์ƒ ์ดํ›„ ๊ฐ ๋ณ€์ˆ˜์˜ ์กฐ๊ฑด๋ถ€ ๊ธฐ์—ฌ๋„ ๊ฐ’์˜ ๋ณ€ํ™” ๋ฐ˜์‘ ์†๋„๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ํŒ๋‹จํ•˜์—ฌ, ์ด์ƒ์˜ ์›์ธ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ฒฉ๋ฆฌ์™€ ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ๋ถ„์„์„ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ œ์•ˆ๋œ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋ชจ๋ธ์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์€ ์ˆ˜๋…„๊ฐ„ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋ฒค์น˜๋งˆํฌ ๊ณต์ •์œผ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์–ด ์™”๊ธฐ ๋•Œ๋ฌธ์—, ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ ๋‹ค๋ฅธ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•ด ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ˆ˜์˜ ๋‹จ์œ„ ๊ณต์ •์„ ํฌํ•จํ•˜๊ณ  ์žˆ๊ณ , ์ˆœํ™˜์ ์ธ ๋ณ€์ˆ˜ ๊ด€๊ณ„ ์—ญ์‹œ ํฌํ•จํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ์‹œํ—˜ํ•ด ๋ณด๊ธฐ์— ์ ํ•ฉํ–ˆ๋‹ค. ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋‚ด๋ถ€์—๋Š” 28๊ฐœ ์ข…๋ฅ˜์˜ ์ด์ƒ์ด ํ”„๋กœ๊ทธ๋žจ ์ƒ์— ๋‚ด์žฅ๋˜์–ด ์žˆ๋Š”๋ฐ, ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ 96% ์ด์ƒ์˜ ๋†’์€ ์ด์ƒ ๊ฐ์ง€์œจ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์— ์ œ์‹œ๋œ ๊ณต์ • ๊ฐ์‹œ ๋ฐฉ๋ฒ•๋ก ๋“ค์— ๋น„ํ•˜์—ฌ ์›”๋“ฑํžˆ ๋†’์€ ์ˆ˜์น˜์˜€๋‹ค. ๋˜ํ•œ ์ด์ƒ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ, ๋ชจ๋“  ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ ์›์ธ์ด ๋˜๋Š” ๋…ธ๋“œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์ด์ƒ ์ „ํŒŒ ๊ฒฝ๋กœ ์—ญ์‹œ ์ •ํ™•ํ•˜๊ฒŒ ํƒ์ง€ํ•˜์—ฌ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ๋Š” ์ฐจ๋ณ„ํ™”๋œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์— ์ ์šฉํ•ด ๋ด„์œผ๋กœ์จ, ๋ณธ ์—ฐ๊ตฌ ๋‚ด์šฉ์ด ๊ณต์ • ์ด์ƒ์˜ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ์— ๋Œ€ํ•œ ํ†ตํ•ฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก  ์ค‘์—์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Contents Abstract i Contents iv List of Tables vii List of Figures ix 1 Introduction 1 1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Markov Random Fields Modelling, Graphical Lasso, and Optimal Structure Learning 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 MRF Modelling & Structure Learning . . . . . . . . . . . . . . . . . 19 2.4.1 MRF modelling in process systems . . . . . . . . . . . . . . 19 2.4.2 Structure learning using iterative graphical lasso . . . . . . . 20 2.5 Application of Iterative Graphical Lasso on the TEP . . . . . . . . . . 24 3 Efficient Process Monitoring via the Integrated Use of Markov Random Fields Learning and the Graphical Lasso 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 MRF Monitoring Integrated with Graphical Lasso . . . . . . . . . . . 35 3.2.1 Step 1: Iterative graphical lasso . . . . . . . . . . . . . . . . 36 3.2.2 Step 2: MRF monitoring . . . . . . . . . . . . . . . . . . . . 36 3.3 Implementation of Glasso-MRF monitoring to the Tennessee Eastman process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 41 3.3.2 Glasso-MRF monitoring on TEP . . . . . . . . . . . . . . . . 48 3.3.3 Fault detection accuracy comparison with other monitoring techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4 Fault detection speed & fault propagation . . . . . . . . . . . 95 4 Process Fault Diagnosis via Markov Random Fields Learning and Inference 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Probabilistic graphical models & Markov random fields . . . 106 4.2.2 Kernel belief propagation . . . . . . . . . . . . . . . . . . . . 107 4.3 Fault Diagnosis via MRF Modeling . . . . . . . . . . . . . . . . . . 113 4.3.1 MRF structure learning via graphical lasso . . . . . . . . . . 116 4.3.2 Kernel belief propagation - bandwidth selection . . . . . . . . 116 4.3.3 Conditional contribution evaluation . . . . . . . . . . . . . . 117 4.4 Application Results & Discussion . . . . . . . . . . . . . . . . . . . 118 4.4.1 Two tank process . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.2 Tennessee Eastman process . . . . . . . . . . . . . . . . . . 137 5 Concluding Remarks 152 Bibliography 157 Nomenclature 169 Abstract (In Korean) 170Docto

    Deep Learning in Visual Computing and Signal Processing

    Get PDF

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iranโ€™s Nuclear Facilities, a Steel Mill in Germany, and Ukraineโ€™s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms

    Fault diagnosis in industrial process by using LSTM and an elastic net

    Full text link
    [EN] Fault diagnosis is important for industrial processes because it permits to determine the necessity of emergency stops in a process and/or to propose a maintenance plan. Two strategies for fault diagnosis are compared in this work. On the one hand, the data are preprocessed using the independent components analysis for dimension reduction, then the wavelet transform is used in order to highlight the faulty signals, with this information an artificial neural network was fed. On the other hand, the second strategy, the main contribution of this work, is the implementation of a long short term memory. This memory is fed with the most representative variables selected by an elastic net to use both, the L1 and L2 norms. These strategies are applied in the Tennessee Eastman process, a benchmark widely used for fault diagnosis. The fault isolation had better results than those reported in the literature.[ES] El diagnรณstico de fallas es importante en los procesos industriales, ya que permite determinar si es necesario detener el proceso en operaciรณn y/o proponer un plan de mantenimiento. En el presente trabajo se comparan dos estrategias para diagnosticar fallas. La primera realiza un preprocesamiento de datos usando el anรกlisis de componentes independientes para reducir la dimensiรณn de los datos, posteriormente, se emplea la transformada wavelet para resaltar las seรฑales de falla, con esta informaciรณn se alimenta una red neuronal artificial. Por su parte, la segunda estrategia, principal contribuciรณn de este trabajo, usa una memoria de corto y largo plazo. Esta memoria es alimentada por las variables mรกs significativas seleccionadas mediante una red elรกstica para usar tanto la norma L1L_1 como la L2L_2. Como ejemplo de aplicaciรณn se utilizรณ el proceso quรญmico Tennessee Eastman, un proceso ampliamente usado en el diagnรณstico de fallas. El aislamiento de fallas mostrรณ mejores resultados con respecto a los reportados en la literatura.Mรกrquez-Vera, MA.; Lรณpez-Ortega, O.; Ramos-Velasco, LE.; Ortega-Mendoza, RM.; Fernรกndez-Neri, BJ.; Zรบรฑiga-Peรฑa, NS. (2021). Diagnรณstico de fallas mediante una LSTM y una red elรกstica. Revista Iberoamericana de Automรกtica e Informรกtica industrial. 18(2):164-175. https://doi.org/10.4995/riai.2020.13611OJS164175182Adewole, A., Tzoneva, R., Behardien, S., 2016. Distribution network fault section identification and fault location using wavelet entropy and neural networks. Applied Soft Computing 46, 296-306. https://doi.org/10.1016/j.asoc.2016.05.013Alkaya, A., Eker, I., 2011. Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application. ISA Transactions 50, 287-302. https://doi.org/10.1016/j.isatra.2010.12.004Barakat, S., Eteiba, M., Wahba, W., 2014. Fault location in underground cables using anfis nets and discrete wavelet transform. Journal of Electrical Systems and Information Technology 1, 198-211. https://doi.org/10.1016/j.jesit.2014.12.003Bathelt, A., Ricker, N., Jelali, M., 2015. Revision of the Tennessee Eastman process model. IFAC Papers-Online 48 (8), 309-314. https://doi.org/10.1016/j.ifacol.2015.08.199Boldt, F., Rauber, T., Varejao, F., October 2014. Evaluation of the extreme learning machine for automatic fault diagnosis of the Tennessee Eastman chemical process. In: IEEE (Ed.), Annual Conference of the IEEE Industrial Electronics Society. Vol. 40. Dallas, Texas, pp. 2551-2557. https://doi.org/10.1109/IECON.2014.7048865Chen, H., Tino, P., Yao, X., 2014. Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space. Computers and Chemical Engineering 67, 33-42. https://doi.org/10.1016/j.compchemeng.2014.03.015Rodrigues, J., Filho, P., PeixotoJr., E., Kumar, A., deAlbuquerque, V., 2019. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters 125, 140-149. https://doi.org/10.1016/j.patrec.2019.04.019Dixit, A., Majumdar, S., 2013. Comparative analysis of coiflet and daubechies wavelets using global threshold for image denoising. Intenational Journal of Advances in Engineering & Technology 6 (5), 2247-2252.Downs, J., Vogel, E., 1993. A plant-wide industrial process control problem. Computers and Chemical Engineering 17 (3), 245-255. https://doi.org/10.1016/0098-1354(93)80018-IFischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270, 654-669. https://doi.org/10.1016/j.ejor.2017.11.054Gao, X., Hou, J., 2016. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process. Neurocomputing 174, 906-911. https://doi.org/10.1016/j.neucom.2015.10.018Geng, Z., Li, Z., Han, Y., 2018. A new deep belief network based on RBM with glial chains. Information Sciences 463, 294-306. https://doi.org/10.1016/j.ins.2018.06.043Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, United States of America, http://www.deeplearningbook.ogr.Han, L., Li, C., Guo, S., Su, X., 2015. Feature extraction method of bearing AE signal based on improved Fast-ICA and wavelet packet energy. Mechanical Systems and Signal Processing 62-63, 91-99. https://doi.org/10.1016/j.ymssp.2015.03.009Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference and prediction. Springer, New York. https://doi.org/10.1007/978-0-387-84858-7Hoang, D., Kang, H., 2019. A survey on deep learning based bearing fault diagnosis. Neurocomputing 335, 327-335. ttps://doi.org/10.1016/j.neucom.2018.06.078Hochreiter, S., Schmidhuber, J., 1997. Long short term memory. Neural Computation 9 (8), 1735-1780. ttps://doi.org/10.1162/neco.1997.9.8.1735Hyvรคrinen, A., Oja, E., 2000. Independent component analysis: Algorithms and applications. Neural Networks 13, 411-430. ttps://doi.org/10.1016/S0893-6080(00)00026-5Jing, C., Gao, X., Zhu, X., Lang, S., July 2014. Fault classificaction on Tennessee Eastman process: PCA and SVM. In: IEEE (Ed.), Intenational Conference on Mecatronics and Control. Jinzhou, China, pp. 2194-2197. https://doi.org/10.1109/ICMC.2014.7231958Jung, C., Kim, K., Lee, J., Klockl, B., 2007. Wavelet and neuro-fuzzy based fault location for combined transmission systems. Energy Systems 29, 445-454. https://doi.org/10.1016/j.ijepes.2006.11.003Kandula, V. K., 2011. Fault detection in process control plants using principal component analysis. Master's thesis, Louisiana State University, Department of Electrical Engineering.Karpenko, M., Sepehri, N., Octubre 2001. A neural network based fault detection and identification scheme for pneumatic process control valves. In: IEEE (Ed.), International Conference on Systems, Man and Cybernetics. Tucson, USA, pp. 93-98. https://doi.org/10.1109/ICSMC.2001.969794Khakipour, M., Safavi, A., Setoodeh, P., 2017. Bearing fault diagnosis with morphological gradient wavelet. Journal of the Franklin Institute 354, 2465-2476. https://doi.org/10.1016/j.jfranklin.2016.11.013Kuang, T., Yang, Z., Yao, Y., 2015. Multivariate fault isolation via variable selection in discriminant analysis. Journal of Process Control 35, 30-40. https://doi.org/10.1016/j.isatra.2017.06.014Kumar, R., Bansal, H., 2019. Hardware in the loop implementation of wavelet based strategy in shuntactive powerfilter to mitigate power quality issues. Electric Power Systems Research 169, 92-104. https://doi.org/10.1016/j.epsr.2019.01.001Lau, C., Ghosh, K., Hussain, M., Hassan, C. C., 2013. Fault disgnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemom. Intell. Lab. Syst. 120, 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005Lee, J., Yoo, C., Lee, I., 2004. Statistical process monitoring with independent component analysis. Journal of Process Control 14 (5), 467-485. https://doi.org/10.1016/j.jprocont.2003.09.004Lei, J., Liu, C., Jiang, D., 2019. Fault diagnosis of wind turbine based on long short-term memory networks. Renewable Energy 133, 422-432. https://doi.org/10.1016/j.renene.2018.10.031Li, W., Monti, A., Ponci, F., 2014. Fault detection and classification in medium voltage DC shipboard power systems with wavelets and artificial neural networks. IEEE Transactions on Instrumentation and Measurement 63 (11), 2651-2665. https://doi.org/10.1109/TIM.2014.2313035Liang, P., Deng, C.,Wu, J., Yang, Z., Zhu, J., Zhang, Z., 2019. Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform. Computers in Industry 113, 103132. https://doi.org/10.1016/j.compind.2019.103132Lin, J., Zhang, A., 2005. Fault feature separation using wavelet-ICA filter. NDT&E International 38, 421-427. https://doi.org/10.1016/j.ndteint.2004.11.005Linker, R., Gutman, P., Seginer, I., 2002. Observer-based robust failure detection and isolation in greenhouses. Control Engineering Practice 10 (5), 519- 531. https://doi.org/10.1016/S0967-0661(02)00002-3Lou, W., Loparo, K., 2004. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing 18, 1077-1095. https://doi.org/10.1016/S0888-3270(03)00077-3Lv, F.,Wen, C., Bao, Z., Liu, M., 2016. Fault diagnosis based on deep learning. In: AACC (Ed.), American Control Conference. Boston, USA, pp. 6851-6856. https://doi.org/10.1109/ACC.2016.7526751Lv, F., Wen, C., Liu, M., Bao, Z., 2017. Weighted time series fault diagnosis based on a staked sparce autoencoder. Journal of Chemometrics 31, 16 pages. https://doi.org/10.1002/cem.2912Lv, F., Fan, X., Wen, C., Bao, Z., 2018. Stacked sparse auto encoder network based multimode process monitoring. In: IEEE (Ed.), International Conference on Control Automation & Information Science. Hangzhou, China, pp. 227-232. https://doi.org/10.1109/ICCAIS.2018.8570618Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M., 1998. ECG pattern recognition and classification using non-linear transfor mations and neural networks: A review. International Journal of Medical Informatics 52, 191-208. https://doi.org/10.1016/S1386-5056(98)00138-5Methnani, S., Lafont, F., Gautier, J., Damak, T., Toumi, A., 2013. Actuator and sensor fault detection, isolation and identification in nonlinear dynamical systems, with applications to a waste water treatment plant. Journal of Computer Engineering and Informatics 1 (4), 112-125. https://doi.org/10.1080/21642583.2014.888525Muรฑoz-Cobo, J., Mendizรกbal, R., Miquel, A., Berna, C., Escrivรก, A., 2017. Use of the principles of maximum entropy and maximum relative entropy for the determination of uncertain parameter distributions in engineering applications. Entropy 19, 486, 37 pages. https://doi.org/10.3390/e19090486Nguyen, B., Quyen, A., Nguyen, P., Ton, T., July 2017. Wavelet-based neural network for recognition of faults at nhabe power substation of the vietnam power system. In: IEEE (Ed.), International Conference on System Science and Engineering. Ho Chi Minh City, Vietnam, pp. 165-168. https://doi.org/10.1109/ICSSE.2017.8030858Ojeda-Gonzรกlez, A., Mendes-Jr., O., Oliveira-Domingues, M., Menconi, V., 2014. Daubechies wavelet coeffcients: a tool to study interplanetary magnetic field fluctuations. Geof'ฤฑsica Internacional 53 (2), 101-115. https://doi.org/10.1016/S0016-7169(14)71494-1Oliveira, J., Pontes, K., Santori, I., Embirucu, M., 2017. Fault detection and diagnosis in dynamic systems using weightless neural networks. Expert Systems With Applications 84, 200-219. https://doi.org/10.1016/j.eswa.2017.05.020Patan, K., 2008. Artificial neural networks for the modelling and fault diagnosis of technical process. Lecture Notes in Control and Information Sciences. Springer, India.Rafiee, J., Rafiee, M., Tse, P., 2010. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications 37, 4568-4579. https://doi.org/10.1016/j.eswa.2009.12.051Ramos-Velasco, L., Ramos-Fernรกndez, J., Islar-Gรณmez, O., Espejel-Rivera, M., Garcรญa-Lamont, J., Mรกrquez-Vera, M., 2013. Identificaciรณn y control wavenet de un motor de ca. Revista Iberoamericana de Automรกtica e Informรกtica Industrial 10, 269-278. https://doi.org/10.1016/j.riai.2013.05.002Rato, T., Reis, M., 2013. Defining the structure of DPCA models and its impact on process monitoring and prediction ctivities. Chemometrics and Intelligent Laboratory Systems 125, 74-86. https://doi.org/10.1016/j.chemolab.2013.03.009Rockinger, M., Jondeau, E., 2002. Entropy densities with an application to autoregressive conditional skewness and kurtosis. Journal of Econometrics 106, 119-142. https://doi.org/10.1016/S0304-4076(01)00092-6Salahschoor, K., Kiasi, F., July 2008. On-line process monitoring based on wavelet-ICA methodology. In: IFAC (Ed.), Proceedings of the 17th World Congress. Seul- Korea, pp. 6-11. https://doi.org/10.3182/20080706-5-KR-1001.01253Salahshoor, K., Khoshro, M., Kordestani, M., 2011. Fault detection and diagnosis of an industrial steam turbine using a distributed configuration of adaptive neuro-fuzzy inference systems. Simulation Modelling Practice and Theory 19, 1280-1293. https://doi.org/10.1016/j.simpat.2011.01.005Sharif, I., Khare, S., 2014. Comparative analysis of Haar and Daubechies wavelet for hyper spectral image classification. In: Commission, I. T. (Ed.), VIII Symposium of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Hyderabad-India, pp. 937-941. https://doi.org/10.5194/isprsarchives-XL-8-937-2014Smirnov, E., Timoshenko, D., Adrianov, S., 2014. Comparison of regularization methods for imagenet classification with deep convolutional neural networks. AASRI Procedia 6, 89-94. https://doi.org/10.1016/j.aasri.2014.05.013Sobhani-Tehrani, E., Khorasani, K., 2009. Fault diagnosis of nonlinear systems using a hybrid approach. Fault detetion and diagnosis. Springer, Berlin, Ch. 2, pp. 22-49. https://doi.org/10.1007/978-0-387-92907-1_2Tayarani-Bathaie, S., Vanini, Z., Khorasani, K., 2014. Dynamic neural networkbased fault diagnosis of gas turbine engines. Neurocomputing 125, 153-165. https://doi.org/10.1016/j.neucom.2012.06.050Zvokelj, M., Zupan, S., Prebil, I., 2016. EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. Journal of Sound and Vibration 26, 394-423. https://doi.org/10.1016/j.jsv.2016.01.046Wang, X., Qin, Y., Wang, Y., Xiang, S., Chen, H., 2019. ReLTanh: An activation function with vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery fault diagnosis. Neurocomputing 363, 88-98. https://doi.org/10.1016/j.neucom.2019.07.017Wu, F., Tong, F., Yang, Z., 2016. EMGdi signal enhancement based on ICA decomposition and wavelet transform. Applied Soft Computing 43, 561-571. https://doi.org/10.1016/j.asoc.2016.03.002Wu, J., Hsu, C., Wu, G., 2009. Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference. Expert Systems with Applications 36, 6244-6255. https://doi.org/10.1016/j.eswa.2008.07.023Wu, Q., Law, R., Wu, S., 2011. Fault diagnosis of car assembly line based on fuzzy wavelet kernel support vector classifier machine and modified genetic algorithm. Expert Systems with Applications 38, 9096-9104. https://doi.org/10.1016/j.eswa.2010.12.109Wu, H., Zhao., Jinsong, 2018. Deep convolutional neural network model based chemical process fault diagnosis. Computers and Chemical Engineering 115, 185-197. https://doi.org/10.1016/j.compchemeng.2018.04.009Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., Chen, Z., 2019. Short and midterm sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment 233, 111358. https://doi.org/10.1016/j.rse.2019.111358Xie, D., Bai, L., December 2015. A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process. In: IEEE (Ed.), International Conference on Machine Learning and Applications. Vol. 14. Miami, USA, pp. 745-748. https://doi.org/10.1109/ICMLA.2015.208Yan, R., Gao, R., Chen, X., 2014. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing 351, 4555-4569. https://doi.org/10.1016/j.sigpro.2013.04.015Yan, Z., Yao, Y., 2015. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemometrics and Intelligent Laboratory Systems 146, 136-146. https://doi.org/10.1016/j.chemolab.2015.05.019Yao, G., Lei, T., Zhong, J., 2019. A review of convolutional-neural-networkbased action recognition. Pattern Recognition Letters 118, 14-22. https://doi.org/10.1016/j.patrec.2018.05.018Yin, S., Ding, S., Haghani, A., Hao, H., Zhang, P., 2012. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control 22, 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009Zhang, Q., Yang, L., Chen, Z., Li, P., 2018. A survey on deep learning for big data. Information Fusion 42, 146-157. https://doi.org/10.1016/j.inffus.2017.10.006Zhang, X., Polycarpou, M., Parisini, T., 2002. A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Transactions on Automatic Control 47 (4), 576-593. https://doi.org/10.1109/9.995036Zhang, Y., Zhang, L., Zhang, H., 2012. Fault detection for industrial processes. Mathematical Problems in Engineering 2012, 18 pages. https://doi.org/10.1155/2012/757828Zhang, Z., Zhao, J., 2017. A deep belief network based fault diagnosis model for complex chemical process. Computers and Chemical Engineering 107, 395-407. https://doi.org/10.1016/j.compchemeng.2017.02.041Zhao, H., 2018. Neural component analysis for fault detection. Chemometrics and Intelligent Laboratory Systems 176, 11-21. https://doi.org/10.1016/j.chemolab.2018.02.001Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050Zheng, J., Huang, W., Wang, Z., Liang, J., 2019. Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process. Journal of Process Control 83, 63-76. https://doi.org/10.1016/j.jprocont.2019.09.00

    Data driven methods for updating fault detection and diagnosis system in chemical processes

    Get PDF
    Modern industrial processes are becoming more complex, and consequently monitoring them has become a challenging task. Fault Detection and Diagnosis (FDD) as a key element of process monitoring, needs to be investigated because of its essential role in decision making processes. Among available FDD methods, data driven approaches are currently receiving increasing attention because of their relative simplicity in implementation. Regardless of FDD types, one of the main traits of reliable FDD systems is their ability of being updated while new conditions that were not considered at their initial training appear in the process. These new conditions would emerge either gradually or abruptly, but they have the same level of importance as in both cases they lead to FDD poor performance. For addressing updating tasks, some methods have been proposed, but mainly not in research area of chemical engineering. They could be categorized to those that are dedicated to managing Concept Drift (CD) (that appear gradually), and those that deal with novel classes (that appear abruptly). The available methods, mainly, in addition to the lack of clear strategies for updating, suffer from performance weaknesses and inefficient required time of training, as reported. Accordingly, this thesis is mainly dedicated to data driven FDD updating in chemical processes. The proposed schemes for handling novel classes of faults are based on unsupervised methods, while for coping with CD both supervised and unsupervised updating frameworks have been investigated. Furthermore, for enhancing the functionality of FDD systems, some major methods of data processing, including imputation of missing values, feature selection, and feature extension have been investigated. The suggested algorithms and frameworks for FDD updating have been evaluated through different benchmarks and scenarios. As a part of the results, the suggested algorithms for supervised handling CD surpass the performance of the traditional incremental learning in regard to MGM score (defined dimensionless score based on weighted F1 score and training time) even up to 50% improvement. This improvement is achieved by proposed algorithms that detect and forget redundant information as well as properly adjusting the data window for timely updating and retraining the fault detection system. Moreover, the proposed unsupervised FDD updating framework for dealing with novel faults in static and dynamic process conditions achieves up to 90% in terms of the NPP score (defined dimensionless score based on number of the correct predicted class of samples). This result relies on an innovative framework that is able to assign samples either to new classes or to available classes by exploiting one class classification techniques and clustering approaches.Los procesos industriales modernos son cada vez mรกs complejos y, en consecuencia, su control se ha convertido en una tarea desafiante. La detecciรณn y el diagnรณstico de fallos (FDD), como un elemento clave de la supervisiรณn del proceso, deben ser investigados debido a su papel esencial en los procesos de toma de decisiones. Entre los mรฉtodos disponibles de FDD, los enfoques basados en datos estรกn recibiendo una atenciรณn creciente debido a su relativa simplicidad en la implementaciรณn. Independientemente de los tipos de FDD, una de las principales caracterรญsticas de los sistemas FDD confiables es su capacidad de actualizaciรณn, mientras que las nuevas condiciones que no fueron consideradas en su entrenamiento inicial, ahora aparecen en el proceso. Estas nuevas condiciones pueden surgir de forma gradual o abrupta, pero tienen el mismo nivel de importancia ya que en ambos casos conducen al bajo rendimiento de FDD. Para abordar las tareas de actualizaciรณn, se han propuesto algunos mรฉtodos, pero no mayoritariamente en el รกrea de investigaciรณn de la ingenierรญa quรญmica. Podrรญan ser categorizados en los que estรกn dedicados a manejar Concept Drift (CD) (que aparecen gradualmente), y a los que tratan con clases nuevas (que aparecen abruptamente). Los mรฉtodos disponibles, ademรกs de la falta de estrategias claras para la actualizaciรณn, sufren debilidades en su funcionamiento y de un tiempo de capacitaciรณn ineficiente, como se ha referenciado. En consecuencia, esta tesis estรก dedicada principalmente a la actualizaciรณn de FDD impulsada por datos en procesos quรญmicos. Los esquemas propuestos para manejar nuevas clases de fallos se basan en mรฉtodos no supervisados, mientras que para hacer frente a la CD se han investigado los marcos de actualizaciรณn supervisados y no supervisados. Ademรกs, para mejorar la funcionalidad de los sistemas FDD, se han investigado algunos de los principales mรฉtodos de procesamiento de datos, incluida la imputaciรณn de valores perdidos, la selecciรณn de caracterรญsticas y la extensiรณn de caracterรญsticas. Los algoritmos y marcos sugeridos para la actualizaciรณn de FDD han sido evaluados a travรฉs de diferentes puntos de referencia y escenarios. Como parte de los resultados, los algoritmos sugeridos para el CD de manejo supervisado superan el rendimiento del aprendizaje incremental tradicional con respecto al puntaje MGM (puntuaciรณn adimensional definida basada en el puntaje F1 ponderado y el tiempo de entrenamiento) hasta en un 50% de mejora. Esta mejora se logra mediante los algoritmos propuestos que detectan y olvidan la informaciรณn redundante, asรญ como ajustan correctamente la ventana de datos para la actualizaciรณn oportuna y el reciclaje del sistema de detecciรณn de fallas. Ademรกs, el marco de actualizaciรณn FDD no supervisado propuesto para tratar fallas nuevas en condiciones de proceso estรกticas y dinรกmicas logra hasta 90% en tรฉrminos de la puntuaciรณn de NPP (puntuaciรณn adimensional definida basada en el nรบmero de la clase de muestras correcta predicha). Este resultado se basa en un marco innovador que puede asignar muestras a clases nuevas o a clases disponibles explotando una clase de tรฉcnicas de clasificaciรณn y enfoques de agrupamientoPostprint (published version

    A Machine Learning-based Distributed System for Fault Diagnosis with Scalable Detection Quality in Industrial IoT

    Get PDF
    In this paper, a methodology based on machine learning for fault detection in continuous processes is presented. It aims to monitor fully distributed scenarios, such as the Tennessee Eastman Process, selected as the use case of this work, where sensors are distributed throughout an industrial plant. A hybrid feature selection approach based on filters and wrappers, called Hybrid Fisher Wrapper method, is proposed to select the most representative sensors to get the highest detection quality for fault identification. The proposed methodology provides a complete design space of solutions differing in the sensing effort, the processing complexity, and the obtained detection quality. It constitutes an alternative to the typical scheme in Industry 4.0, where multiple distributed sensor systems collect and send data to a centralised cloud. Differently, the proposed technique follows a distributed approach, in which processing can be done eventually close to the sensors where data is generated, i.e., at the edge of the Internet of Things. This approach overcomes the bandwidth, privacy, and latency limitations that centralised approaches may suffer. The experimental results show that the proposed methodology provides Tennessee Eastman Process fault detection solutions with state-of-the-art detection quality figures. In terms of latency, solutions obtained outperform in 37.5 times the implementation with the highest detection quality, using 1.99 times fewer features, on average. Also, the scalability of the framework provides a design space where the optimal implementation can be chosen according to the application needs
    • โ€ฆ
    corecore