119 research outputs found

    Cognitive robot mapping with polylines and an absolute space representation

    Get PDF
    Abstract—Robot mapping even today is one of the most challenging problems in robot programming. Most successful methods use some form of occupancy grid to represent a mapped region. This approach becomes problematic if the robot is mapping a large environment, the map quickly becomes too large for processing and storage. Rather than storing the map as an occupancy grid, our robot (equipped with sonars) sees the world as a series of connected spaces. These spaces are initially mapped as an occupancy grid in a room by room fashion. As the robot leaves a space, denoted by passing through a doorway, the grids are converted to a polygonal representation. This polygonal representation is stored as rooms and hallways as a set of Absolute Space Representations (ASRs) representing the space connections. Using this representation makes navigation and localization easier for the robot to process. I

    Concurrent Cognitive Mapping and Localization Using Expectation Maximization

    Get PDF
    Robot mapping remains one of the most challenging problems in robot programming. Most successful methods use some form of occupancy grid for representing a mapped region. An occupancy grid is a two dimensional array in which the array cells represents (x,y) coordinates of a cartesian map. This approach becomes problematic in mapping large environments as the map quickly becomes too large for processing and storage. Rather than storing the map as an occupancy grid, our robot (equipped with ultrasonic sonars) views the world as a series of connected spaces. These spaces are initially mapped as an occupancy grid in a room-by-room fashion using a modified version of the Histogram In Motion Mapping (HIMM) algorithm extended in this thesis. As the robot leaves a space, denoted by passing through a doorway, it converts the grid to a polygonal representation using a novel edge detection technique. Then, it stores the polygonal representation as rooms and hallways in a set of Absolute Space Representations (ASRs) representing the space connections. Using this representation makes navigation and localization easier for the robot to process. The system also performs localization on the simplified cognitive version of the map using an iterative method of estimating the maximum likelihood of the robot\u27s correct position. This is accomplished using the Expectation Maximization algorithm. Treating vector directions from the polygonal map as a Gaussian distribution, the Expectation Maximization algorithm is applied, for the first time, to find the most probable correct pose while using a cognitive mapping approach

    Multi-Robot FastSLAM for Large Domains

    Get PDF
    For a robot to build a map of its surrounding area, it must have accurate position information within the area, and to obtain accurate position information within the area, the robot needs to have an accurate map of the area. This circular problem is the Simultaneous Localization and Mapping (SLAM) problem. An efficient algorithm to solve it is FastSLAM, which is based on the Rao-Blackwellized particle filter. FastSLAM solves the SLAM problem for single-robot mapping using particles to represent the posterior of the robot pose and the map. Each particle of the filter possesses its own global map which is likely to be a grid map. The memory space required for these maps poses a serious limitation to the algorithm\u27s capability when the problem space is large. The problem will only get worse if the algorithm is adapted to multi-robot mapping. This thesis presents an alternate mapping algorithm that extends the single-robot FastSLAM algorithm to a multi-robot mapping algorithm that uses Absolute Space Representations (ASR) to represent the world. But each particle still maintains a local grid to map its vicinity and periodically this grid map is converted into an ASR. An ASR expresses a world in polygons requiring only a minimal amount of memory space. By using this altered mapping strategy, the problem faced in FastSLAM when mapping a large domain can be alleviated. In this algorithm, each robot maps separately, and when two robots encounter each other they exchange range and odometry readings from their last encounter to this encounter. Each robot then sets up another filter for the other robot\u27s data and incrementally updates its own map, incorporating the passed data and its own data at the same time. The passed data is processed in reverse by the receiving robot as if a virtual robot is back-tracking the path of the other robot. The algorithm is demonstrated using three data sets collected using a single robot equipped with odometry and laser-range finder sensors

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Using a mobile robot to test a theory of cognitive mapping

    Get PDF
    This paper describes using a mobile robot, equipped with some sonar sensors and an odometer, to test navigation through the use of a cognitive map. The robot explores an office environment, computes a cognitive map, which is a network of ASRs [36, 35], and attempts to find its way home. Ten trials were conducted and the robot found its way home each time. From four random positions in two trials, the robot estimated the home position relative to its current position reasonably accurately. Our robot does not solve the simultaneous localization and mapping problem and the map computed is fuzzy and inaccurate with much of the details missing. In each homeward journey, it computes a new cognitive map of the same part of the environment, as seen from the perspective of the homeward journey. We show how the robot uses distance information from both maps to find its way home. © 2007 Springer-Verlag Berlin Heidelberg

    Effective Visualizations of the Uncertainty in Hurricane Forecasts

    Get PDF
    The track forecast cone developed by the U.S. National Hurricane Center is the one most universally adopted by the general public, the news media, and governmental officials to enhance viewers\u27 understanding of the forecasts and their underlying uncertainties. However, current research has experimentally shown that it has limitations that result in misconceptions of the uncertainty included. Most importantly, the area covered by the cone tends to be misinterpreted as the region affected by the hurricane. In addition, the cone summarizes forecasts for the next three days into a single representation and, thus, makes it difficult for viewers to accurately determine crucial time-specific information. To address these limitations, this research develops novel alternative visualizations. It begins by developing a technique that generates and smoothly interpolates robust statistics from ensembles of hurricane predictions, thus creating visualizations that inherently include the spatial uncertainty by displaying three levels of positional storm strike risk at a specific point in time. To address the misconception of the area covered by the cone, this research develops time-specific visualizations depicting spatial information based on a sampling technique that selects a small, representative subset from an ensemble of points. It also allows depictions of such important storm characteristics as size and intensity. Further, this research generalizes the representative sampling framework to process ensembles of forecast tracks, selecting a subset of tracks accurately preserving the original distributions of available storm characteristics and keeping appropriately defined spatial separations. This framework supports an additional hurricane visualization portraying prediction uncertainties implicitly by directly showing the members of the subset without the visual clutter. We collaborated on cognitive studies that suggest that these visualizations enhance viewers\u27 ability to understand the forecasts because they are potentially interpreted more like uncertainty distributions. In addition to benefiting the field of hurricane forecasting, this research potentially enhances the visualization community more generally. For instance, the representative sampling framework for processing 2D points developed here can be applied to enhancing the standard scatter plots and density plots by reducing sizes of data sets. Further, as the idea of direct ensemble displays can possibly be extended to more general numerical simulations, it, thus, has potential impacts on a wide range of ensemble visualizations

    Self-contained map based navigation in autonomous robotic units

    Get PDF
    Autonomous robotic units such as reconnaissance robots are dependent on reliable and precise sources of navigation data. In some circumstances the positoning solutions widely available today, GPS and commercial IPS-solutions, are not enough to secure reliable positioning data due to their sensitivity to electromagnetic- and radio-interference. This thesis proposes a set of algorithms and techniques that can be used as a part of a standalone positionrecognition system that provides another level of redundancy in such appliance

    Line segment based range scan matching without pose information for indoor environments

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 53-55.A mobile robot exploring an unknown environment often needs to keep track of its pose through its sensors. Range scan matching is a way of computing the pose difference of a robot at two different locations on the navigation path by finding common features observed in range sensor readings recorded at these locations. In this thesis, we introduce a new algorithm which computes this pose difference by matching common line segments extracted from two laser range scans taken from two different but unknown poses. In this algorithm, matching is performed by exploiting invariant geometric relations among line segments. The use of line segments instead of range points also reduces the computational complexity of determining the pose difference between two distinct scans. Compared to other scan matching algorithms, our method presents a powerful means for global scan matching, map building, place recognition, loop closing and multirobot mapping, all in real-time.Yakın, İskenderM.S

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results
    corecore