342,745 research outputs found

    Lifestyle and Genetic Contributions to Cognitive Decline and Hippocampal Structure and Function in Healthy Aging

    Get PDF
    Background: Engagement in cognitively stimulating activities (CA) and leisure time physical activity (PA) have been associated with maintaining cognitive performance and reducing the likelihood of cognitive decline in older adults. However, neural mechanisms underlying protective effects of these lifestyle behaviors are largely unknown. In the current study, we investigated the effect of self-reported PA and CA on hippocampal volume and semantic processing activation during a fame discrimination task, as measured by functional magnetic resonance imaging (fMRI). We also examined whether possession of the apolipoprotein E (APOE) ?4 allele could moderate the effect of PA or CA on hippocampal structure or function. Methods: Seventy-eight healthy, cognitively intact older adults underwent baseline neuropsychological assessment, hippocampal volume measurement via manually-traced structural MRI, and task-activated fMRI. Results: After 18 months, 27 participants declined by one standard deviation or more on follow-up neuropsychological testing. Logistic regression analyses revealed that CA alone or in combination with baseline hippocampal structure or functional activity did not predict the probability of cognitive decline. In contrast, PA interacted with APOE 4 status such that engagement in PA reduced the risk of cognitive decline in APOE 4 carriers only. Furthermore, the benefits of PA appeared to diminish with reduced functional activity or volume in the hippocampus. Conclusions: Our findings suggest that increased leisure time PA is associated with reduced probability of cognitive decline in persons who are at high risk for AD. The beneficial effects of PA in this group may be related to enhancement of the functional and structural integrity of the hippocampus

    Longitudinal brain atrophy rates in transient ischemic attack and minor ischemic stroke patients and cognitive profiles

    Get PDF
    Introduction: Patients with transient ischemic attack (TIA) and minor stroke demonstrate cognitive impairment, and a four-fold risk of late-life dementia. Aim: To study the extent to which the rates of brain volume loss in TIA patients differ from healthy controls and how they are correlated with cognitive impairment. Methods: TIA or minor stroke patients were tested with a neuropsychological battery and underwent T1 weighted volumetric magnetic resonance imaging scans at fixed intervals over a 3 years period. Linear mixed effects regression models were used to compare brain atrophy rates between groups, and to determine the relationship between atrophy rates and cognitive function in TIA and minor stroke patients. Results: Whole brain atrophy rates were calculated for the TIA and minor stroke patients; n = 38 between 24 h and 18 months, and n = 68 participants between 18 and 36 months, and were compared to healthy controls. TIA and minor stroke patients demonstrated a significantly higher whole brain atrophy rate than healthy controls over a 3 years interval (p = 0.043). Diabetes (p = 0.012) independently predicted higher atrophy rate across groups. There was a relationship between higher rates of brain atrophy and processing speed (composite P = 0.047 and digit symbol coding P = 0.02), but there was no relationship with brain atrophy rates and memory or executive composite scores or individual cognitive tests for language (Boston naming, memory recall, verbal fluency or Trails A or B score). Conclusion: TIA and minor stroke patients experience a significantly higher rate of whole brain atrophy. In this cohort of TIA and minor stroke patients changes in brain volume over time precede cognitive decline

    Baseline and longitudinal grey matter changes in newly diagnosed Parkinson\u27s disease: ICICLE-PD study

    Get PDF
    Mild cognitive impairment in Parkinson\u27s disease is associated with progression to dementia (Parkinson\u27s disease dementia) in a majority of patients. Determining structural imaging biomarkers associated with prodromal Parkinson\u27s disease dementia may allow for the earlier identification of those at risk, and allow for targeted disease modifying therapies. One hundred and five non-demented subjects with newly diagnosed idiopathic Parkinson\u27s disease and 37 healthy matched controls had serial 3 T structural magnetic resonance imaging scans with clinical and neuropsychological assessments at baseline, which were repeated after 18 months. The Movement Disorder Society Task Force criteria were used to classify the Parkinson\u27s disease subjects into Parkinson\u27s disease with mild cognitive impairment (n = 39) and Parkinson\u27s disease with no cognitive impairment (n = 66). Freesurfer image processing software was used to measure cortical thickness and subcortical volumes at baseline and follow-up. We compared regional percentage change of cortical thinning and subcortical atrophy over 18 months. At baseline, cases with Parkinson\u27s disease with mild cognitive impairment demonstrated widespread cortical thinning relative to controls and atrophy of the nucleus accumbens compared to both controls and subjects with Parkinson\u27s disease with no cognitive impairment. Regional cortical thickness at baseline was correlated with global cognition in the combined Parkinson\u27s disease cohort. Over 18 months, patients with Parkinson\u27s disease with mild cognitive impairment demonstrated more severe cortical thinning in frontal and temporo-parietal cortices, including hippocampal atrophy, relative to those with Parkinson\u27s disease and no cognitive impairment and healthy controls, whereas subjects with Parkinson\u27s disease and no cognitive impairment showed more severe frontal cortical thinning compared to healthy controls. At baseline, Parkinson\u27s disease with no cognitive impairment converters showed bilateral temporal cortex thinning relative to the Parkinson\u27s disease with no cognitive impairment stable subjects. Although loss of both cortical and subcortical volume occurs in non-demented Parkinson\u27s disease, our longitudinal analyses revealed that Parkinson\u27s disease with mild cognitive impairment shows more extensive atrophy and greater percentage of cortical thinning compared to Parkinson\u27s disease with no cognitive impairment. In particular, an extension of cortical thinning in the temporo-parietal regions in addition to frontal atrophy could be a biomarker in therapeutic studies of mild cognitive impairment in Parkinson\u27s disease for progression towards dementia

    Long-term exposure to fine particulate matter, lung function and cognitive performance:A prospective Dutch cohort study on the underlying routes

    Get PDF
    Background Exposure to fine particulate matter and black carbon is related to cognitive impairment and poor lung function, but less is known about the routes taken by different types of air pollutants to affect cognition. Objectives We tested two possible routes of fine particulate matter (PM2.5) and black carbon (BC) in impairing cognition, and evaluated their importance: a direct route over the olfactory nerve or the blood stream, and an indirect route over the lung. Methods We used longitudinal observational data for 31232 people aged 18+ from 2006 to 2015 from the Dutch Lifelines cohort study. By linking current and past home addresses to air pollution exposure data from ELAPSE, long-term average exposure (≥ ten years) to PM2.5 and BC was calculated. Lung function was assessed by spirometry and Global Initiative (GLI) z-scores of forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were calculated. Cognitive performance was measured by cognitive processing time (CPT) assessed by the Cogstate Brief Battery. Linear structural equation modeling was performed to test the direct/indirect associations. Results Higher exposure to PM2.5 but not BC was directly related to higher CPT and thus slower cognitive processing speed [18.33 (×10−3) SD above the mean (95% CI: 6.84, 29.81)]. The direct association of PM2.5 constituted more than 97% of the total effect. Mediation by lung function was low for PM2.5 with a mediated proportion of 1.78% (FEV1) and 2.62% (FVC), but higher for BC (28.49% and 46.22% respectively). Discussion Our results emphasize the importance of the lung acting as a mediator in the relationship between both exposure to PM2.5 and BC, and cognitive performance. However, higher exposure to PM2.5 was mainly directly associated with worse cognitive performance, which emphasizes the health-relevance of fine particles due to their ability to reach vital organs directly

    Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old.

    Get PDF
    OBJECTIVE: To investigate the relationship between amyloid-β (Aβ) deposition and markers of brain structure on cognitive decline in oldest-old individuals with initial normal cognition. METHODS: We studied cognitive functioning in four domains at baseline and change over time in fifty-seven cognitively intact individuals from the EMIF-AD 90+ study. Predictors were Aβ status determined by [18 F]-flutemetamol PET (normal = Aβ - vs. abnormal = Aβ+), cortical thickness in 34 regions and hippocampal volume. Mediation analyses were performed to test whether effects of Aβ on cognitive decline were mediated by atrophy of specific anatomical brain areas. RESULTS: Subjects had a mean age of 92.7 ± 2.9 years, of whom 19 (33%) were Aβ+. Compared to Aβ-, Aβ+ individuals showed steeper decline on memory (β ± SE = -0.26 ± 0.09), and processing speed (β ± SE = -0.18 ± 0.08) performance over 1.5 years (P < 0.05). Furthermore, medial and lateral temporal lobe atrophy was associated with steeper decline in memory and language across individuals. Mediation analyses revealed that part of the memory decline observed in Aβ+ individuals was mediated through parahippocampal atrophy. INTERPRETATION: These results show that Aβ abnormality even in the oldest old with initially normal cognition is not part of normal aging, but is associated with a decline in cognitive functioning. Other pathologies may also contribute to decline in the oldest old as cortical thickness predicted cognitive decline similarly in individuals with and without Aβ pathology

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p &lt; 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    Get PDF
    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified
    • …
    corecore