208 research outputs found

    Partially-Distributed Resource Allocation in Small-Cell Networks

    Full text link
    We propose a four-stage hierarchical resource allocation scheme for the downlink of a large-scale small-cell network in the context of orthogonal frequency-division multiple access (OFDMA). Since interference limits the capabilities of such networks, resource allocation and interference management are crucial. However, obtaining the globally optimum resource allocation is exponentially complex and mathematically intractable. Here, we develop a partially decentralized algorithm to obtain an effective solution. The three major advantages of our work are: 1) as opposed to a fixed resource allocation, we consider load demand at each access point (AP) when allocating spectrum; 2) to prevent overloaded APs, our scheme is dynamic in the sense that as the users move from one AP to the other, so do the allocated resources, if necessary, and such considerations generally result in huge computational complexity, which brings us to the third advantage: 3) we tackle complexity by introducing a hierarchical scheme comprising four phases: user association, load estimation, interference management via graph coloring, and scheduling. We provide mathematical analysis for the first three steps modeling the user and AP locations as Poisson point processes. Finally, we provide results of numerical simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on Wireless Communication

    Interference Aware Cognitive Femtocell Networks

    Get PDF
    Femtocells Access Points (FAP) are low power, plug and play home base stations which are designed to extend the cellular radio range in indoor environments where macrocell coverage is generally poor. They offer significant increases in data rates over a short range, enabling high speed wireless and mobile broadband services, with the femtocell network overlaid onto the macrocell in a dual-tier arrangement. In contrast to conventional cellular systems which are well planned, FAP are arbitrarily installed by the end users and this can create harmful interference to both collocated femtocell and macrocell users. The interference becomes particularly serious in high FAP density scenarios and compromises the ensuing data rate. Consequently, effective management of both cross and co-tier interference is a major design challenge in dual-tier networks. Since traditional radio resource management techniques and architectures for single-tier systems are either not applicable or operate inefficiently, innovative dual-tier approaches to intelligently manage interference are required. This thesis presents a number of original contributions to fulfill this objective including, a new hybrid cross-tier spectrum sharing model which builds upon an existing fractional frequency reuse technique to ensure minimal impact on the macro-tier resource allocation. A new flexible and adaptive virtual clustering framework is then formulated to alleviate co-tier interference in high FAP densities situations and finally, an intelligent coverage extension algorithm is developed to mitigate excessive femto-macrocell handovers, while upholding the required quality of service provision. This thesis contends that to exploit the undoubted potential of dual-tier, macro-femtocell architectures an interference awareness solution is necessary. Rigorous evidence confirms that noteworthy performance improvements can be achieved in the quality of the received signal and throughput by applying cognitive methods to manage interference
    • …
    corecore