275 research outputs found

    Best sum-throughput evaluation of cooperative downlink transmission nonorthogonal multiple access system

    Get PDF
    In cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) downlink situations, the current research investigates the total throughput of users in center and edge of cell. We focus on creating ways to solve these problems because the fair transmission rate of users located in cell edge and outage performance are significant hurdles at NOMA schemes. To enhance the functionality of cell-edge users, we examine a two-user NOMA scheme whereby the cell-center user functions as a SWIPT relay using power splitting (PS) with a multiple-input single-output. We calculated the probability of an outage for both center and edge cell users, using closed-form approximation formulas and evaluate the system efficacy. The usability of cell edge users is maximized by downlink transmission NOMA (CDT-NOMA) employing a SWIPT relay that employs PS. The suggested approach calculates the ideal value of the PS coefficient to optimize the sum throughput. Compared to the noncooperative and single-input single-output NOMA systems, the best SWIPT-NOMA system provides the cell-edge user with a significant throughput gain. Applying SWIPT-based relaying transmission has no impact on the framework’s overall throughput

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Active RIS Assisted Rate-Splitting Multiple Access Network: Spectral and Energy Efficiency Tradeoff

    Get PDF
    With the increasing demand of high data rate and massive access in both ultra-dense and industrial Internet-of-things networks, spectral efficiency (SE) and energy efficiency (EE) are regarded as two important and inter-related performance metrics for future networks. In this paper, we investigate a novel integration of rate-splitting multiple access (RSMA) and reconfigurable intelligent surface (RIS) into cellular systems to achieve a desirable tradeoff between SE and EE. Different from the commonly used passive RIS, we adopt reflection elements with active load to improve a newly defined metric, called resource efficiency (RE), which is capable of striking a balance between SE and EE. This paper focuses on the RE optimization by jointly designing the base station (BS) transmit precoding and RIS beamforming (BF) while guaranteeing the transmit and forward power budgets of the BS and RIS, respectively. To efficiently tackle the challenges for solving the RE maximization problem due to its fractional objective function, coupled optimization variables, and discrete coefficient constraint, the formulated nonconvex problem is solved by proposing a two-stage optimization framework. For the outer stage problem, a quadratic transformation is used to recast the fractional objective into a linear form, and a closed-form solution is obtained by using auxiliary variables. For the inner stage problem, the system sum rate is approximated into a linear function. Then, an alternating optimization (AO) algorithm is proposed to optimize the BS precoding and RIS BF iteratively, by utilizing the penalty dual decomposition (PDD) method. Simulation results demonstrate the superiority of the proposed design compared to other benchmarks

    A survey on reconfigurable intelligent surfaces: wireless communication perspective

    Get PDF
    Using reconfigurable intelligent surfaces (RISs) to improve the coverage and the data rate of future wireless networks is a viable option. These surfaces are constituted of a significant number of passive and nearly passive components that interact with incident signals in a smart way, such as by reflecting them, to increase the wireless system's performance as a result of which the notion of a smart radio environment comes to fruition. In this survey, a study review of RIS-assisted wireless communication is supplied starting with the principles of RIS which include the hardware architecture, the control mechanisms, and the discussions of previously held views about the channel model and pathloss; then the performance analysis considering different performance parameters, analytical approaches and metrics are presented to describe the RIS-assisted wireless network performance improvements. Despite its enormous promise, RIS confronts new hurdles in integrating into wireless networks efficiently due to its passive nature. Consequently, the channel estimation for, both full and nearly passive RIS and the RIS deployments are compared under various wireless communication models and for single and multi-users. Lastly, the challenges and potential future study areas for the RIS aided wireless communication systems are proposed

    Throughput analysis of non-orthogonal multiple access and orthogonal multiple access assisted wireless energy harvesting K-hop relaying networks

    Get PDF
    This study introduces the non-orthogonal multiple access (NOMA) technique into the wireless energy harvesting K-hop relay network to increase throughput. The relays have no dedicated energy source and thus depend on energy harvested by wireless from a power beacon (PB). Recently, NOMA has been promoted as a technology with the potential to enhance connectivity, reduce latency, increase fairness amongst users, and raise spectral effectiveness compared to orthogonal multiple access (OMA) technology. For performance considerations, we derive exact throughput expressions for NOMA and OMA-assisted multi-hop relaying and compare the performance between the two. The obtained results are validated via Monte Carlo simulations

    Performance Analysis for the RIS and the AmBC Systems at the Short Blocklength Regime

    Get PDF
    This thesis investigates and analyzes the performances of the RIS and AmBC systems, and three main research works are involved. The first research work of this thesis is to present the decoding error probability bounds for the optimal code in an RIS system within the short blocklength regime and given a code rate and signal-to-noise ratio (SNR). The approach uses sphere-packing techniques to derive the main results, with the Wald sequential t-test lemma and the Riemann sum serving as the primary tools for obtaining the closed-form expressions for both the upper and lower bounds. The numerical results are demonstrated to illustrate the performance of the findings. The last two research works focus on examining the maximal achievable rate for a given maximum error probability and blocklength in a system that employs reconfigurable intelligent surface (RIS) or ambient backscatter communication (AmBC) to aid a multiple-input and multiple-output (MIMO) communication system. The findings of these research include finite blocklength and finite alphabet constraints channel coding achievability and converse bounds, which are established through the use of the Berry-Esseen theorem, the Mellin transform, and the closed-form expression of the mutual information and the unconditional variance. The numerical analysis indicates that the maximum achievable rate is reached rapidly as the blocklength increases. Additionally, the channel variance accurately reflects the deviation from the maximum achievable rate due to the finite blocklength

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Reinforcement Learning Based Resource Allocation for Energy-Harvesting-Aided D2D Communications in IoT Networks

    Get PDF
    It is anticipated that mobile data traffic and the demand for higher data rates will increase dramatically as a result of the explosion of wireless devices, such as the Internet of Things (IoT) and machine-to-machine communication. There are numerous location-based peer-to-peer services available today that allow mobile users to communicate directly with one another, which can help offload traffic from congested cellular networks. In cellular networks, Device-to-Device (D2D) communication has been introduced to exploit direct links between devices instead of transmitting through a the Base Station (BS). However, it is critical to note that D2D and IoT communications are hindered heavily by the high energy consumption of mobile devices and IoT devices. This is because their battery capacity is restricted. There may be a way for energy-constrained wireless devices to extend their lifespan by drawing upon reusable external sources of energy such as solar, wind, vibration, thermoelectric, and radio frequency (RF) energy in order to overcome the limited battery problem. Such approaches are commonly referred to as Energy Harvesting (EH) There is a promising approach to energy harvesting that is called Simultaneous Wireless Information and Power Transfer (SWIPT). Due to the fact that wireless users are on the rise, it is imperative that resource allocation techniques be implemented in modern wireless networks. This will facilitate cooperation among users for limited resources, such as time and frequency bands. As well as ensuring that there is an adequate supply of energy for reliable and efficient communication, resource allocation also provides a roadmap for each individual user to follow in order to consume the right amount of energy. In D2D networks with time, frequency, and power constraints, significant computing power is generally required to achieve a joint resource management design. Thus the purpose of this study is to develop a resource allocation scheme that is based on spectrum sharing and enables low-cost computations for EH-assisted D2D and IoT communication. Until now, there has been no study examining resource allocation design for EH-enabled IoT networks with SWIPT-enabled D2D schemes that utilize learning techniques and convex optimization. In most of the works, optimization and iterative approaches with a high level of computational complexity have been used which is not feasible in many IoT applications. In order to overcome these obstacles, a learning-based resource allocation mechanism based on the SWIPT scheme in IoT networks is proposed, where users are able to harvest energy from different sources. The system model consists of multiple IoT users, one BS, and multiple D2D pairs in EH-based IoT networks. As a means of developing an energy-efficient system, we consider the SWIPT scheme with D2D pairs employing the time switching method (TS) to capture energy from the environment, whereas IoT users employ the power splitting method (PS) to harvest energy from the BS. A mixed-integer nonlinear programming (MINLP) approach is presented for the solution of the Energy Efficiency (EE) problem by jointly optimizing subchannel allocation, power-splitting factor, power, and time together. As part of the optimization approach, the original EE optimization problem is decomposed into three subproblems, namely: (a) subchannel assignment and power splitting factor, (b) power allocation, and (c) time allocation. In order to solve the subproblem assignment problem, which involves discrete variables, the Q-learning approach is employed. Due to the large size of the overall problem and the continuous nature of certain variables, it is impractical to optimize all variables by using the learning technique. Instead dealing for the continuous variable problems, namely power and time allocation, the original non-convex problem is first transformed into a convex one, then the Majorization-Minimization (MM) approach is applied as well as the Dinkelbach. The performance of the proposed joint Q-learning and optimization algorithm has been evaluated in detail. In particular, the solution was compared with a linear EH model, as well as two heuristic algorithms, namely the constrained allocation algorithm and the random allocation algorithm, in order to determine its performance. The results indicate that the technique is superior to conventional approaches. For example, it can be seen that for the distance of d=10d = 10 m, our proposed algorithm leads to EE improvement when compared to the method such as prematching algorithm, constrained allocation, and random allocation methods by about 5.26\%, 110.52\%, and 143.90\%, respectively. Considering the simulation results, the proposed algorithm is superior to other methods in the literature. Using spectrum sharing and harvesting energy from D2D and IoT devices achieves impressive EE gains. This superior performance can be seen both in terms of the average and sum EEs, as well as when compared to other baseline schemes

    Data Collection in Two-Tier IoT Networks with Radio Frequency (RF) Energy Harvesting Devices and Tags

    Get PDF
    The Internet of things (IoT) is expected to connect physical objects and end-users using technologies such as wireless sensor networks and radio frequency identification (RFID). In addition, it will employ a wireless multi-hop backhaul to transfer data collected by a myriad of devices to users or applications such as digital twins operating in a Metaverse. A critical issue is that the number of packets collected and transferred to the Internet is bounded by limited network resources such as bandwidth and energy. In this respect, IoT networks have adopted technologies such as time division multiple access (TDMA), signal interference cancellation (SIC) and multiple-input multiple-output (MIMO) in order to increase network capacity. Another fundamental issue is energy. To this end, researchers have exploited radio frequency (RF) energy-harvesting technologies to prolong the lifetime of energy constrained sensors and smart devices. Specifically, devices with RF energy harvesting capabilities can rely on ambient RF sources such as access points, television towers, and base stations. Further, an operator may deploy dedicated power beacons that serve as RF-energy sources. Apart from that, in order to reduce energy consumption, devices can adopt ambient backscattering communication technologies. Advantageously, backscattering allows devices to communicate using negligible amount of energy by modulating ambient RF signals. To address the aforementioned issues, this thesis first considers data collection in a two-tier MIMO ambient RF energy-harvesting network. The first tier consists of routers with MIMO capability and a set of source-destination pairs/flows. The second tier consists of energy harvesting devices that rely on RF transmissions from routers for energy supply. The problem is to determine a minimum-length TDMA link schedule that satisfies the traffic demand of source-destination pairs and energy demand of energy harvesting devices. It formulates the problem as a linear program (LP), and outlines a heuristic to construct transmission sets that are then used by the said LP. In addition, it outlines a new routing metric that considers the energy demand of energy harvesting devices to cope with routing requirements of IoT networks. The simulation results show that the proposed algorithm on average achieves 31.25% shorter schedules as compared to competing schemes. In addition, the said routing metric results in link schedules that are at most 24.75% longer than those computed by the LP
    • …
    corecore