2,418 research outputs found

    A biologically inspired meta-control navigation system for the Psikharpax rat robot

    Get PDF
    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e. g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics

    Bibliography of computational models of rat spatial behavior

    Get PDF
    A bibliography of computational models of rat spatial behavior

    Whisking with robots from rat vibrissae to biomimetic technology for active touch

    Get PDF
    This article summarizes some of the key features of the rat vibrissal system, including the actively controlled sweeping movements of the vibrissae known as whisking, and reviews the past and ongoing research aimed at replicating some of this functionality in biomimetic robots

    Place cognition and active perception: a study with evolved robots

    Get PDF
    A study of place cognition and 'place units' in robots produced via artificial evolution is described. Previous studies have investigated the possible role of place cells as building blocks for 'cognitive maps' representing place, distance and direction. Studies also show, however, that when animals are restrained, the spatial selectivity of place cells is partially or completely lost. This suggests that the role of place cells in spatial cognition depends not only on the place cells themselves, but also on representations of the animal's physical interactions with its environment. This hypothesis is tested in a population of evolved robots. The results suggest that successful place cognition requires not only the ability to process spatial information, but also the ability to select the environmental stimuli to which the agent is exposed. If this is so, theories of active perception can make a useful contribution to explaining the role of place cells in spatial cognition

    How Albot0 finds its way home: a novel approach to cognitive mapping using robots

    Get PDF
    Much of what we know about cognitive mapping comes from observing how biological agents behave in their physical environments, and several of these ideas were implemented on robots, imitating such a process. In this paper a novel approach to cognitive mapping is presented whereby robots are treated as a species of their own and their cognitive mapping is being investigated. Such robots are referred to as Albots. The design of the first Albot, Albot0, is presented. Albot0 computes an imprecise map and employs a novel method to find its way home. Both the map and the returnhome algorithm exhibited characteristics commonly found in biological agents. What we have learned from Albot0’s cognitive mapping are discussed. One major lesson is that the spatiality in a cognitive map affords us rich and useful information and this argues against recent suggestions that the notion of a cognitive map is not a useful one

    Robot pain: a speculative review of its functions

    Get PDF
    Given the scarce bibliography dealing explicitly with robot pain, this chapter has enriched its review with related research works about robot behaviours and capacities in which pain could play a role. It is shown that all such roles Âżranging from punishment to intrinsic motivation and planning knowledgeÂż can be formulated within the unified framework of reinforcement learning.Peer ReviewedPostprint (author's final draft
    • …
    corecore