1,824 research outputs found

    Psychophysiology in games

    Get PDF
    Psychophysiology is the study of the relationship between psychology and its physiological manifestations. That relationship is of particular importance for both game design and ultimately gameplaying. Players’ psychophysiology offers a gateway towards a better understanding of playing behavior and experience. That knowledge can, in turn, be beneficial for the player as it allows designers to make better games for them; either explicitly by altering the game during play or implicitly during the game design process. This chapter argues for the importance of physiology for the investigation of player affect in games, reviews the current state of the art in sensor technology and outlines the key phases for the application of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject (project no: 318803).peer-reviewe

    A Multifaceted Consideration of Motivation and Learning within ASSISTments

    Get PDF
    An approach to education gaining popularity in the modern classroom, adaptive tutoring systems offer interactive learning environments in which students can access immediate feedback and rich tutoring while teachers can achieve organized assessment for targeted interventions. Yet despite the benefits that these systems provide, a number of questions remain regarding the optimal inner workings of adaptive platforms. What is the recipe for optimal student performance within these platforms? What elements should be taken into consideration when designing these learning environments? Can facets of these platforms be harnessed to increase students’ motivation to learn and to improve both immediate and robust learning gains? This thesis combines work conducted over the past two years through versatile approaches toward the goal of enhancing student motivation and learning within the ASSISTments platform. Approaches considered include a) enhancing motivation and performance through altered feedback using hypermedia elements, b) instilling motivational messages alongside media enhanced content and feedback, c) allowing students to choose their feedback medium, thereby exerting control over their assignment, d) altering content delivery by interleaving skills to enhance solution strategy development, and e) establishing partial credit assessments to drive motivation and proper system usage while enhancing student modeling. After a brief introduction regarding the main tenants of this research, each chapter highlights a randomized controlled trial focused around one of these approaches. All studies presented have been conducted or are still running within ASSISTments. Much of this work has already been published at peer reviewed conference venues, some with stringent acceptance rates as low as 25% for full papers. Two of the studies presented here are second iterations of previously published work that are still in progress, and only preliminary analyses are available. A chapter on conclusions and future work is included to discuss the contributions that have been made to the Learning Sciences community thus far, and to briefly discuss potential directions for my continued research

    When Easy Becomes Boring and Difficult Becomes Frustrating: Disentangling the Effects of Item Difficulty Level and Person Proficiency on Learning and Motivation.

    Get PDF
    The research on electronic learning environments has evolved towards creating adaptive learning environments. In this study, the focus is on adaptive curriculum sequencing, in particular, the efficacy of an adaptive curriculum sequencing algorithm based on matching the item difficulty level to the learner’s proficiency level. We therefore explored the effect of the relative difficulty level on learning outcome and motivation. Results indicate that, for learning environments consisting of questions focusing on just one dimension and with knowledge of correct response, it does not matter whether we present easy, moderate or difficult items or whether we present the items with a random mix of difficulty levels, regarding both learning and motivation

    BeSocratic: An Intelligent Tutoring System for the Recognition, Evaluation, and Analysis of Free-form Student Input

    Get PDF
    This dissertation describes a novel intelligent tutoring system, BeSocratic, which aims to help fill the gap between simple multiple-choice systems and free-response systems. BeSocratic focuses on targeting questions that are free-form in nature yet defined to the point which allows for automatic evaluation and analysis. The system includes a set of modules which provide instructors with tools to assess student performance. Beyond text boxes and multiple-choice questions, BeSocratic contains several modules that recognize, evaluate, provide feedback, and analyze student-drawn structures, including Euclidean graphs, chemistry molecules, computer science graphs, and simple drawings. Our system uses a visual, rule-based authoring system which enables the creation of activities for use within science, technology, engineering, and mathematics classrooms. BeSocratic records each action that students make within the system. Using a set of post-analysis tools, teachers have the ability to examine both individual and group performances. We accomplish this using hidden Markov model-based clustering techniques and visualizations. These visualizations can help teachers quickly identify common strategies and errors for large groups of students. Furthermore, analysis results can be used directly to improve activities through advanced detection of student errors and refined feedback. BeSocratic activities have been created and tested at several universities. We report specific results from several activities, and discuss how BeSocratic\u27s analysis tools are being used with data from other systems. We specifically detail two chemistry activities and one computer science activity: (1) an activity focused on improving mechanism use, (2) an activity which assesses student understanding of Gibbs energy, and (3) an activity which teaches students the fundamentals of splay trees. In addition to analyzing data collected from students within BeSocratic, we share our visualizations and results from analyzing data gathered with another educational system, PhET

    Automated analysis of Learner\u27s Research Article writing and feedback generation through Machine Learning and Natural Language Processing

    Get PDF
    Teaching academic writing in English to native and non-native speakers is a challenging task. Quite a variety of computer-aided instruction tools have arisen in the form of Automated Writing Evaluation (AWE) systems to help students in this regard. This thesis describes my contribution towards the implementation of the Research Writing Tutor (RWT), an AWE tool that aids students with academic research writing by analyzing a learner\u27s text at the discourse level. It offers tailored feedback after analysis based on discipline-aware corpora. At the core of RWT lie two different computational models built using machine learning algorithms to identify the rhetorical structure of a text. RWT extends previous research on a similar AWE tool, the Intelligent Academic Discourse Evaluator (IADE) (Cotos, 2010), designed to analyze articles at the move level of discourse. As a result of the present research, RWT analyzes further at the level of discourse steps, which are the granular communicative functions that constitute a particular move. Based on features extracted from a corpus of expert-annotated research article introductions, the learning algorithm classifies each sentence of a document with a particular rhetorical move and a step. Currently, RWT analyzes the introduction section of a research article, but this work generalizes to handle the other sections of an article, including Methods, Results and Discussion/Conclusion. This research describes RWT\u27s unique software architecture for analyzing academic writing. This architecture consists of a database schema, a specific choice of classification features, our computational model training procedure, our approach to testing for performance evaluation, and finally the method of applying the models to a learner\u27s writing sample. Experiments were done on the annotated corpus data to study the relation among the features and the rhetorical structure within the documents. Finally, I report the performance measures of our 23 computational models and their capability to identify rhetorical structure on user submitted writing. The final move classifier was trained using a total of 5828 unigrams and 11630 trigrams and performed at a maximum accuracy of 72.65%. Similarly, the step classifier was trained using a total of 27689 unigrams and 27160 trigrams and performed at a maximum accuracy of 72.01%. The revised architecture presented also led to increased speed of both training (a 9x speedup) and real-time performance (a 2x speedup). These performance rates are sufficient for satisfactory usage of RWT in the classroom. The overall goal of RWT is to empower students to write better by helping them consider writing as a series of rhetorical strategies to convey a functional meaning. This research will enable RWT to be deployed broadly into a wider spectrum of classrooms

    Integrating knowledge tracing and item response theory: A tale of two frameworks

    Get PDF
    Traditionally, the assessment and learning science commu-nities rely on different paradigms to model student performance. The assessment community uses Item Response Theory which allows modeling different student abilities and problem difficulties, while the learning science community uses Knowledge Tracing, which captures skill acquisition. These two paradigms are complementary - IRT cannot be used to model student learning, while Knowledge Tracing assumes all students and problems are the same. Recently, two highly related models based on a principled synthesis of IRT and Knowledge Tracing were introduced. However, these two models were evaluated on different data sets, using different evaluation metrics and with different ways of splitting the data into training and testing sets. In this paper we reconcile the models' results by presenting a unified view of the two models, and by evaluating the models under a common evaluation metric. We find that both models are equivalent and only differ in their training procedure. Our results show that the combined IRT and Knowledge Tracing models offer the best of assessment and learning sciences - high prediction accuracy like the IRT model, and the ability to model student learning like Knowledge Tracing

    Sequencing in Intelligent Tutoring Systems based on online learning Recommenders

    Get PDF
    In dieser Arbeit entwickeln und testen wir Algorithmen für Learning Analytics, die die personalisierte Sequenzierung von Matheaufgaben erlauben. Die Sequenzierung schlägt die nächste Aufgabe einem Schüler vor, die seine Lernbedürfnisse entspricht. Unsere Lösung basiert auf Vygotskys „Zone of Proximal Development“ (ZPD), das die weder zu einfachen noch zu schwierigen Aufgaben für den Schüler bestimmt. Der Sequenzer, auch Vygotsky Policy Sequencer genannt, ist in der Lage Aufgaben im ZPD zu erkennen, dank die von einem Vorhersagealgorithmus geschätzte zukünftige Leistung des Schülers. Die Arbeit enthält folgende Beiträge: (1) Die Evaluation der Anwendbarkeit von Matrix Factorization als Inhaltsdomäne unabhängige Algorithmus für die Vorhersage der Leistung der Schüler. (2) Anpassung und Evaluation eines Matrix Factorization basierenden Algorithmus, der die zeitliche Evolution der Schülerkenntnisse einbezieht. (3) Entwicklung von zwei Ansätzen für die Aktualisierung von Matrix Factorization basierenden Modellen durch den Kalman Filter. Zwei Aktualisierungsfunktionen sind benutzt: (a) eine einfache, die nur die letzte vom Schüler gesehene Aufgabe betrachtet, und (b) eine, die in der Lage ist, seine fehlenden Kompetenzen einzuschätzen. (4) Ein neues Verfahren von Machine Learning gesteuerte Sequenzer zu testen durch die Modellierung einer simulierten Umgebung, die aus simulierte Schülern und Aufgaben mit stetigen erzielten und gebrauchten Fähigkeiten und Schwierigkeitsgraden besteht. (5) Die Entwicklung einer minimal eingreifenden API für die leichte Integration von Machine Learning basierende Komponente in größere Systeme, um das Integrationsrisiko und die Kosten vom Know-How-Transfer zu minimieren. Dank all diesen Beiträgen, wurde der VPS in ein großes kommerzielles System integriert und mit 100 Kinder für einen Monat getestet. Der VPS zeigte Lerneffekte und wahrgenommene Erlebnisse, die mit den von den ITS Sequenzer vergleichbar sind. Infolge der besseren VPS Modellierfähigkeiten konnten die Schüler beendeten die Aufgaben schneller lösen.In this thesis we design and test Learning Analytics algorithms for personalized tasks' sequencing that suggests the next task to a student according to his/her specific needs. Our solution is based on a sequencing policy derived from the Vygotsky's Zone of Proximal Development (ZPD), which denes those tasks that are neither too easy not too dicult for the student. The sequencer, called Vygotsky Policy Sequencer (VPS), can identify tasks in the ZPD thanks to the information it receives from performance prediction algorithms able to estimate the knowledge of the student. Under this context we describe hereafter the thesis contributions. (1) A feasibility evaluation of domain independent Matrix Factorization applied in ITS for Performance Prediction. (2) An adaption and the related evaluation of a domain independent update for online learning Matrix Factorization in ITS. (3) A novel Matrix Factorization update method based on Kalman Filters approach. Two different updating functions are used: (a) a simple one considering the task just seen, and (b) one able to derive the skills' deficiency of the student. (4) A new method for offline testing of machine learning controlled sequencers by modeling simulated environment composed by a simulated students and tasks with continuous knowledge and score representation and different diffculty levels. (5) The design of a minimal invasive API for the lightweight integration of machine learning components in larger systems to minimize the risk of integration and the cost of expertise transfer. Profiting from all these contributions, the VPS was integrated in a commercial system and evaluated with 100 children over a month. The VPS showed comparable learning gains and perceived experience results with those of the ITS sequencer. Finally, thanks to its better modeling abilities, the students finish faster the assigned tasks

    Student Modeling and Analysis in Adaptive Instructional Systems

    Get PDF
    There is a growing interest in developing and implementing adaptive instructional systems to improve, automate, and personalize student education. A necessary part of any such adaptive instructional system is a student model used to predict or analyze learner behavior and inform adaptation. To help inform researchers in this area, this paper presents a state-of-the-art review of 11 years of research (2010-2021) in student modeling, focusing on learner characteristics, learning indicators, and foundational aspects of dissimilar models. We mainly emphasize increased prediction accuracy when using multidimensional learner data to create multimodal models in real-world adaptive instructional systems. In addition, we discuss challenges inherent in real-world multimodal modeling, such as uncontrolled data collection environments leading to noisy data and data sync issues. Finally, we reinforce our findings and conclusions through an industry case study of an adaptive instructional system. In our study, we verify that adding multiple data modalities increases our model prediction accuracy from 53.3% to 69%. At the same time, the challenges encountered with our real-world case study, including uncontrolled data collection environment with inevitably noisy data, calls for synchronization and noise control strategies for data quality and usability
    • …
    corecore