1,565 research outputs found

    Cognitive Interference Management in Retransmission-Based Wireless Networks

    Full text link
    Cognitive radio methodologies have the potential to dramatically increase the throughput of wireless systems. Herein, control strategies which enable the superposition in time and frequency of primary and secondary user transmissions are explored in contrast to more traditional sensing approaches which only allow the secondary user to transmit when the primary user is idle. In this work, the optimal transmission policy for the secondary user when the primary user adopts a retransmission based error control scheme is investigated. The policy aims to maximize the secondary users' throughput, with a constraint on the throughput loss and failure probability of the primary user. Due to the constraint, the optimal policy is randomized, and determines how often the secondary user transmits according to the retransmission state of the packet being served by the primary user. The resulting optimal strategy of the secondary user is proven to have a unique structure. In particular, the optimal throughput is achieved by the secondary user by concentrating its transmission, and thus its interference to the primary user, in the first transmissions of a primary user packet. The rather simple framework considered in this paper highlights two fundamental aspects of cognitive networks that have not been covered so far: (i) the networking mechanisms implemented by the primary users (error control by means of retransmissions in the considered model) react to secondary users' activity; (ii) if networking mechanisms are considered, then their state must be taken into account when optimizing secondary users' strategy, i.e., a strategy based on a binary active/idle perception of the primary users' state is suboptimal.Comment: accepted for publication on Transactions on Information Theor

    Cognitive Access Policies under a Primary ARQ process via Forward-Backward Interference Cancellation

    Get PDF
    This paper introduces a novel technique for access by a cognitive Secondary User (SU) using best-effort transmission to a spectrum with an incumbent Primary User (PU), which uses Type-I Hybrid ARQ. The technique leverages the primary ARQ protocol to perform Interference Cancellation (IC) at the SU receiver (SUrx). Two IC mechanisms that work in concert are introduced: Forward IC, where SUrx, after decoding the PU message, cancels its interference in the (possible) following PU retransmissions of the same message, to improve the SU throughput; Backward IC, where SUrx performs IC on previous SU transmissions, whose decoding failed due to severe PU interference. Secondary access policies are designed that determine the secondary access probability in each state of the network so as to maximize the average long-term SU throughput by opportunistically leveraging IC, while causing bounded average long-term PU throughput degradation and SU power expenditure. It is proved that the optimal policy prescribes that the SU prioritizes its access in the states where SUrx knows the PU message, thus enabling IC. An algorithm is provided to optimally allocate additional secondary access opportunities in the states where the PU message is unknown. Numerical results are shown to assess the throughput gain provided by the proposed techniques.Comment: 16 pages, 11 figures, 2 table

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    Power-Optimal Feedback-Based Random Spectrum Access for an Energy Harvesting Cognitive User

    Full text link
    In this paper, we study and analyze cognitive radio networks in which secondary users (SUs) are equipped with Energy Harvesting (EH) capability. We design a random spectrum sensing and access protocol for the SU that exploits the primary link's feedback and requires less average sensing time. Unlike previous works proposed earlier in literature, we do not assume perfect feedback. Instead, we take into account the more practical possibilities of overhearing unreliable feedback signals and accommodate spectrum sensing errors. Moreover, we assume an interference-based channel model where the receivers are equipped with multi-packet reception (MPR) capability. Furthermore, we perform power allocation at the SU with the objective of maximizing the secondary throughput under constraints that maintain certain quality-of-service (QoS) measures for the primary user (PU)

    HARQ Feedback in Spectrum Sharing Networks

    Get PDF
    This letter studies the throughput and the outage probability of spectrum sharing networks utilizing hybrid automatic repeat request (HARQ) feedback. We focus on the repetition time diversity and the incremental redundancy HARQ protocols where the results are obtained for both continuous and bursting communication models. The channel data transmission efficiency is investigated in the presence of both secondary user peak transmission power and primary user received interference power constraints. Finally, we evaluate the effect of secondary-primary channel state information imperfection on the performance of the secondary channel. Simulation results show that, while the throughput is not necessarily increased by HARQ, substantial outage probability reduction is achieved in all conditions.Comment: Published in IEEE Communications Letter
    • …
    corecore