687 research outputs found

    Cognitive code-division links with blind primary-system identification

    Get PDF
    Abstract—We consider the problem of cognitive code-division channelization (simultaneous power and code-channel allocation) for secondary transmission links co-existing with an unknown primary code-division multiple-access (CDMA) system. We first develop a blind primary-user identification scheme to detect the binary code sequences (signatures) utilized by primary users. To create a secondary link we propose two alternative procedures –one of moderate and one of low computational complexity – that optimize the secondary transmitting power and binary codechannel assignment in accordance with the detected primary code channels to avoid “harmful ” interference. At the same time, the optimization procedures guarantee that the signalto-interference-plus-noise ratio (SINR) at the output of the maximum SINR linear secondary receiver is no less than a certain threshold to meet secondary transmission quality of service (QoS) requirements. The extension of the channelization problem to multiple secondary links is also investigated. Simulation studies presented herein illustrate the theoretical developments. Index Terms—Blind user identification, code-channel allocation, code-division multiple-access, cognitive radio, dynamic spectrum access, power allocation, signal-to-interference-plusnoise ratio. I

    Waveform Design for Secure SISO Transmissions and Multicasting

    Full text link
    Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    RF channel characterization for cognitive radio using support vector machines

    Get PDF
    Cognitive Radio promises to revolutionize the ways in which a user interfaces with a communications device. In addition to connecting a user with the rest of the world, a Cognitive Radio will know how the user wants to connect to the rest of the world as well as how to best take advantage of unused spectrum, commonly called white space\u27. Through the concept of Dynamic Spectrum Acccess a Cognitive Radio will be able to take advantage of the white space in the spectrum by first identifying where the white space is located and designing a transmit plan for a particular white space. In general a Cognitive Radio melds the capabilities of a Software Defined Radio and a Cognition Engine. The Cognition Engine is responsible for learning how the user interfaces with the device and how to use the available radio resources while the SDR is the interface to the RF world. At the heart of a Cognition Engine are Machine Learning Algorithms that decide how best to use the available radio resources and can learn how the user interfaces to the CR. To decide how best to use the available radio resources, we can group Machine Learning Algorithms into three general categories which are, in order of computational cost: 1.) Linear Least Squares Type Algorithms, e.g. Discrete Fourier Transform (DFT) and their kernel versions, 2.) Linear Support Vector Machines (SVMs) and their kernel versions, and 3.) Neural Networks and/or Genetic Algorithms. Before deciding on what to transmit, a Cognitive Radio must decide where the white space is located. This research is focused on the task of identifying where the white space resides in the spectrum, herein called RF Channel Characterization. Since previous research into the use of Machine Learning Algorithms for this task has focused on Neural Networks and Genetic Algorithms, this research will focus on the use of Machine Learning Algorithms that follow the Support Vector optimization criterion for this task. These Machine Learning Algorithms are commonly called Support Vector Machines. Results obtained using Support Vector Machines for this task are compared with results obtained from using Least Squares Algorithms, most notably, implementations of the Fast Fourier Transform. After a thorough theoretical investigation of the ability of Support Vector Machines to perform the RF Channel Characterization task, we present results of using Support Vector Machines for this task on experimental data collected at the University of New Mexico.\u2

    Frequency-aware rate adaptation and MAC protocol

    Get PDF
    There has been burgeoning interest in wireless technologies that can use wider frequency spectrum. Technology advances, such as 802.11n and ultra-wideband (UWB), are pushing toward wider frequency bands. The analog-to-digital TV transition has made 100-250 MHz of digital whitespace bandwidth available for unlicensed access. Also, recent work on WiFi networks has advocated discarding the notion of channelization and allowing all nodes to access the wide 802.11 spectrum in order to improve load balancing. This shift towards wider bands presents an opportunity to exploit frequency diversity. Specifically, frequencies that are far from each other in the spectrum have significantly different SNRs, and good frequencies differ across sender-receiver pairs. This paper presents FARA, a combined frequency-aware rate adaptation and MAC protocol. FARA makes three departures from conventional wireless network design: First, it presents a scheme to robustly compute per-frequency SNRs using normal data transmissions. Second, instead of using one bit rate per link, it enables a sender to adapt the bitrate independently across frequencies based on these per-frequency SNRs. Third, in contrast to traditional frequency-oblivious MAC protocols, it introduces a MAC protocol that allocates to a sender-receiver pair the frequencies that work best for that pair. We have implemented FARA in FPGA on a wideband 802.11-compatible radio platform. Our experiments reveal that FARA provides a 3.1x throughput improvement in comparison to frequency-oblivious systems that occupy the same spectrum.Industrial Technology Research InstituteNational Science Foundation (U.S.)

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency
    • …
    corecore