36,279 research outputs found

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    A New Constructivist AI: From Manual Methods to Self-Constructive Systems

    Get PDF
    The development of artificial intelligence (AI) systems has to date been largely one of manual labor. This constructionist approach to AI has resulted in systems with limited-domain application and severe performance brittleness. No AI architecture to date incorporates, in a single system, the many features that make natural intelligence general-purpose, including system-wide attention, analogy-making, system-wide learning, and various other complex transversal functions. Going beyond current AI systems will require significantly more complex system architecture than attempted to date. The heavy reliance on direct human specification and intervention in constructionist AI brings severe theoretical and practical limitations to any system built that way. One way to address the challenge of artificial general intelligence (AGI) is replacing a top-down architectural design approach with methods that allow the system to manage its own growth. This calls for a fundamental shift from hand-crafting to self-organizing architectures and self-generated code – what we call a constructivist AI approach, in reference to the self-constructive principles on which it must be based. Methodologies employed for constructivist AI will be very different from today’s software development methods; instead of relying on direct design of mental functions and their implementation in a cog- nitive architecture, they must address the principles – the “seeds” – from which a cognitive architecture can automatically grow. In this paper I describe the argument in detail and examine some of the implications of this impending paradigm shift

    Can the g Factor Play a Role in Artificial General Intelligence Research?

    Get PDF
    In recent years, a trend in AI research has started to pursue human-level, general artificial intelli-gence (AGI). Although the AGI framework is characterised by different viewpoints on what intelligence is and how to implement it in artificial systems, it conceptualises intelligence as flexible, general-purposed, and capable of self-adapting to different contexts and tasks. Two important ques-tions remain open: a) should AGI projects simu-late the biological, neural, and cognitive mecha-nisms realising the human intelligent behaviour? and b) what is the relationship, if any, between the concept of general intelligence adopted by AGI and that adopted by psychometricians, i.e., the g factor? In this paper, we address these ques-tions and invite researchers in AI to open a dis-cussion on the theoretical conceptions and practi-cal purposes of the AGI approach

    Exploring Design Space For An Integrated Intelligent System

    Get PDF
    Understanding the trade-offs available in the design space of intelligent systems is a major unaddressed element in the study of Artificial Intelligence. In this paper we approach this problem in two ways. First, we discuss the development of our integrated robotic system in terms of its trajectory through design space. Second, we demonstrate the practical implications of architectural design decisions by using this system as an experimental platform for comparing behaviourally similar yet architecturally different systems. The results of this show that our system occupies a "sweet spot" in design space in terms of the cost of moving information between processing components

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    A Survey of Brain Inspired Technologies for Engineering

    Full text link
    Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines
    corecore