56 research outputs found

    Interaction Analysis and Cognitive Infocommunications

    Get PDF
    Cognitive infocommunications encompasses both scientific and engineering oriented approaches to examining extensions of human cognitive capabilities that may be assimilated within the concept of humanity. Necessary (but not sufficient) conditions for the success of any candidate technology include solving problems within private and public spheres of existence, in thought and communication. Exemplar cognitive infocommunication technologies that have been assimilated in to the concept of humanitiy are examined: emotion, gesture, language. Implications for research programmes conducted within the cognitive infocommunications discipline are outlined

    A survey on hardware and software solutions for multimodal wearable assistive devices targeting the visually impaired

    Get PDF
    The market penetration of user-centric assistive devices has rapidly increased in the past decades. Growth in computational power, accessibility, and cognitive device capabilities have been accompanied by significant reductions in weight, size, and price, as a result of which mobile and wearable equipment are becoming part of our everyday life. In this context, a key focus of development has been on rehabilitation engineering and on developing assistive technologies targeting people with various disabilities, including hearing loss, visual impairments and others. Applications range from simple health monitoring such as sport activity trackers, through medical applications including sensory (e.g. hearing) aids and real-time monitoring of life functions, to task-oriented tools such as navigational devices for the blind. This paper provides an overview of recent trends in software and hardware-based signal processing relevant to the development of wearable assistive solutions

    Analysis and automatic identification of spontaneous emotions in speech from human-human and human-machine communication

    Get PDF
    383 p.This research mainly focuses on improving our understanding of human-human and human-machineinteractions by analysing paricipants¿ emotional status. For this purpose, we have developed andenhanced Speech Emotion Recognition (SER) systems for both interactions in real-life scenarios,explicitly emphasising the Spanish language. In this framework, we have conducted an in-depth analysisof how humans express emotions using speech when communicating with other persons or machines inactual situations. Thus, we have analysed and studied the way in which emotional information isexpressed in a variety of true-to-life environments, which is a crucial aspect for the development of SERsystems. This study aimed to comprehensively understand the challenge we wanted to address:identifying emotional information on speech using machine learning technologies. Neural networks havebeen demonstrated to be adequate tools for identifying events in speech and language. Most of themaimed to make local comparisons between some specific aspects; thus, the experimental conditions weretailored to each particular analysis. The experiments across different articles (from P1 to P19) are hardlycomparable due to our continuous learning of dealing with the difficult task of identifying emotions inspeech. In order to make a fair comparison, additional unpublished results are presented in the Appendix.These experiments were carried out under identical and rigorous conditions. This general comparisonoffers an overview of the advantages and disadvantages of the different methodologies for the automaticrecognition of emotions in speech

    Annales Mathematicae et Informaticae (44.)

    Get PDF

    Interactive Concept Acquisition for Embodied Artificial Agents

    Get PDF
    An important capacity that is still lacking in intelligent systems such as robots, is the ability to use concepts in a human-like manner. Indeed, the use of concepts has been recognised as being fundamental to a wide range of cognitive skills, including classification, reasoning and memory. Intricately intertwined with language, concepts are at the core of human cognition; but despite a large body or research, their functioning is as of yet not well understood. Nevertheless it remains clear that if intelligent systems are to achieve a level of cognition comparable to humans, they will have to posses the ability to deal with the fundamental role that concepts play in cognition. A promising manner in which conceptual knowledge can be acquired by an intelligent system is through ongoing, incremental development. In this view, a system is situated in the world and gradually acquires skills and knowledge through interaction with its social and physical environment. Important in this regard is the notion that cognition is embodied. As such, both the physical body and the environment shape the manner in which cognition, including the learning and use of concepts, operates. Through active partaking in the interaction, an intelligent system might influence its learning experience as to be more effective. This work presents experiments which illustrate how these notions of interaction and embodiment can influence the learning process of artificial systems. It shows how an artificial agent can benefit from interactive learning. Rather than passively absorbing knowledge, the system actively partakes in its learning experience, yielding improved learning. Next, the influence of embodiment on perception is further explored in a case study concerning colour perception, which results in an alternative explanation for the question of why human colour experience is very similar amongst individuals despite physiological differences. Finally experiments, in which an artificial agent is embodied in a novel robot that is tailored for human-robot interaction, illustrate how active strategies are also beneficial in an HRI setting in which the robot learns from a human teacher

    Annales Mathematicae et Informaticae 2015

    Get PDF

    Digital 3D Technologies for Humanities Research and Education: An Overview

    Get PDF
    Digital 3D modelling and visualization technologies have been widely applied to support research in the humanities since the 1980s. Since technological backgrounds, project opportunities, and methodological considerations for application are widely discussed in the literature, one of the next tasks is to validate these techniques within a wider scientific community and establish them in the culture of academic disciplines. This article resulted from a postdoctoral thesis and is intended to provide a comprehensive overview on the use of digital 3D technologies in the humanities with regards to (1) scenarios, user communities, and epistemic challenges; (2) technologies, UX design, and workflows; and (3) framework conditions as legislation, infrastructures, and teaching programs. Although the results are of relevance for 3D modelling in all humanities disciplines, the focus of our studies is on modelling of past architectural and cultural landscape objects via interpretative 3D reconstruction methods

    An ambient agent model for reading companion robot

    Get PDF
    Reading is essentially a problem-solving task. Based on what is read, like problem solving, it requires effort, planning, self-monitoring, strategy selection, and reflection. Also, as readers are trying to solve difficult problems, reading materials become more complex, thus demands more effort and challenges cognition. To address this issue, companion robots can be deployed to assist readers in solving difficult reading tasks by making reading process more enjoyable and meaningful. These robots require an ambient agent model, monitoring of a reader’s cognitive demand as it could consist of more complex tasks and dynamic interactions between human and environment. Current cognitive load models are not developed in a form to have reasoning qualities and not integrated into companion robots. Thus, this study has been conducted to develop an ambient agent model of cognitive load and reading performance to be integrated into a reading companion robot. The research activities were based on Design Science Research Process, Agent-Based Modelling, and Ambient Agent Framework. The proposed model was evaluated through a series of verification and validation approaches. The verification process includes equilibria evaluation and automated trace analysis approaches to ensure the model exhibits realistic behaviours and in accordance to related empirical data and literature. On the other hand, validation process that involved human experiment proved that a reading companion robot was able to reduce cognitive load during demanding reading tasks. Moreover, experiments results indicated that the integration of an ambient agent model into a reading companion robot enabled the robot to be perceived as a social, intelligent, useful, and motivational digital side-kick. The study contribution makes it feasible for new endeavours that aim at designing ambient applications based on human’s physical and cognitive process as an ambient agent model of cognitive load and reading performance was developed. Furthermore, it also helps in designing more realistic reading companion robots in the future
    corecore