248 research outputs found

    SWIFT: A Narrowband-Friendly Cognitive Wideband Network

    Get PDF
    Wideband technologies in the unlicensed spectrum can satisfy the ever-increasing demands for wireless bandwidth created by emerging rich media applications. The key challenge for such systems, however, is to allow narrowband technologies that share these bands (say, 802.11 a/b/g/n, Zigbee) to achieve their normal performance, without compromising the throughput or range of the wideband network.This paper presents SWIFT, the first system where high-throughput wideband nodes are shown in a working deployment to coexist with unknown narrowband devices, while forming a network of their own. Prior work avoids narrowband devices by operating below the noise level and limiting itself to a single contiguous unused band. While this achieves coexistence, it sacrifices the throughput and operating distance of the wideband device. In contrast, SWIFT creates high throughput wireless links by weaving together non-contiguous unused frequency bands that change as narrowband devices enter or leave the environment. This design principle of cognitive aggregation allows SWIFT to achieve coexistence, while operating at normal power, and thereby obtaining higher throughput and greater operating range. We implement SWIFT on a wideband hardware platform, and evaluate it in the presence of 802.11 devices. In comparison to a baseline that coexists with narrowband devices by operating below their noise level, SWIFT is equally narrowband-friendly but achieves 3.6x-10.5x higher throughput and 6x greater range

    Clearing the Rf Smog: Making 802.11 Robust to Cross-Technology Interference

    Get PDF
    Recent studies show that high-power cross-technology interference is becoming a major problem in today’s 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel. This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.National Science Foundation (U.S.) (NSF grant CNS-0831660)National Science Foundation (U.S.) (NSF grant CNS- 0721857)United States. Defense Advanced Research Projects Agency (DARPA ITMANET

    An Analysis of Electromagnetic Interference (EMI) of Ultra Wideband(UWB) and IEEE 802.11A Wireless Local Area Network (WLAN) Employing Orthogonal Frequency Division Multiplexing (OFDM)

    Get PDF
    Military communications require the rapid deployment of mobile, high-bandwidth systems. These systems must provide anytime, anywhere capabilities with minimal interference to existing military, private, and commercial communications. Ultra Wideband (UWB) technology is being advanced as the next generation radio technology and has the potential to revolutionize indoor wireless communications. The ability of UWB to mitigate multipath fading, provide high-throughput data rates (e.g., greater than 100 Mbps), provide excellent signal penetration (e.g., through walls), and low implementation costs makes it an ideal technology for a wide range of private and public sector applications. Preliminary UWB studies conducted by The Institute for Telecommunications Science (ITS) and the Defense Advanced Research Projects Agency (DARPA) have discovered that potential exists for harmful interference to occur. While these studies have provided initial performance estimates, the interference effects of UWB transmissions on coexisting spectral users are largely unknown. This research characterizes the electromagnetic interference (EMI) effects of UWB on the throughput performance of an IEEE 802.11a ad-hoc network. Radiated measurements in an anechoic chamber investigate interference performance using three modulation schemes (BPSK, BPPM, and OOK) and four pulse repetition frequencies over two Unlicensed National Information Infrastructure (U-NII) channels. Results indicate that OOK and BPPM can degrade throughput performance by up to 20% at lower pulse repetition frequencies (PRFs) in lower U-NII channels. Minimal performance degradation (less than one percent) due to interference was observed for BPSK at the lower PRFs and higher U-NII channels

    Study of Optical OFDM System for Wireless LAN Applications

    Get PDF
    The advantages of optical fiber make it possible to extend the data rate transmission and propagation distance. Orthogonal frequency division multiplexing (OFDM) as a multicarrier technique (MC) is used in hybrid optical-wireless system designs because it has the best spectral efficiency to radio frequency (RF) interference and lower multipath distortion. In this dissertation, a study and evaluation of optical OFDM based wireless local area network (W-LAN) systems are presented. The baseband of the OFDM signal is fully transmitted and up-converted to a radio frequency signal. Also, to reduce system costs, simple base stations (BSs) are interconnected to a central office (CO) via an optical fiber. All the required operations are achieved in the CO. The directly modulated laser (DML) and continuous wave (CW) laser are used in the system simulations as optical laser sources. Identical rectangular microstrip patch antennas have been used at the transmitter and the receiver as well. The simulations were carried out for different SMF and MMF lengths, and the variable wireless distance between the transmitting and receiving antennas was in a range of 40 dB to 80 dB. The purpose of this work is to provide a framework for integrating wireless and optical technologies in one system with the presence of OFDM technology. The required microstrip patch antenna parameters for the system are analyzed and designed. The microstrip patch antenna (S-parameters) is loaded into the Optisystem communication software tool in Touchstone format. As a result, this achievement gives a greater impetus to design an integrated optical-wireless system, and simulation results validate the proposed technique. Then, the integration of the microstrip patch antenna and optical OFDM system is achieved, and the performance is intensely studied. The entire system has been presented by developing analytical models and simulations. The system performance results are obtained regarding EIRP, SNR, signal constellations and BER. The results show that this integrated optical wireless link is very robust for carrying OFDM based wireless LAN signals over an optical fiber. Moreover, using an active patch antenna in the system helps to increase the coverage service to more than 30 meters when an SMF of 80 km length is utilized

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.GarcĂ­a-GarcĂ­a, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    Evolution of Broadband Communication Networks: Architecture and Applications

    Get PDF
    With the rapid increase in users’ demand for flexibility and scalability of communication services, broadband communication networks are facing an ongoing challenge of providing various broadband services using a single communication architecture. This leads to the evolution of a challenging field of multiservice broadband network architectures. This chapter discusses the basic concepts associated with broadband communication network architectures with emphasis on provision of multiservice, and it also focuses on the evolution of broadband communication networks from the traditional architecture to the incorporation of virtualization services, that is, cloud computing. Another important aspect, which relates to the multiservice broadband network, is the “applications” which, as this chapter highlights, are a key-driving factor for the evolution of broadband communication networks. Moreover, this chapter also includes a discussion on New Zealand’s government initiatives to provide improved network coverage within the country

    Enhancing spectrum utilization through cooperation and cognition in wireless systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2013." Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 201-217).We have seen a proliferation of wireless technologies and devices in recent years. The resulting explosion of wireless demand has put immense pressure on available spectrum. Improving spectrum utilization is therefore necessary to enable wireless networks to keep up with burgeoning demand. This dissertation presents a cognitive and cooperative wireless architecture that significantly enhances spectrum utilization. Specifically, it introduces four new systems that embody a cross-layer design for cognition and cooperation. The first system, SWIFT, is a cognitive cross technology solution that enables wideband devices to exploit higher layer network semantics to adaptively sense which portions of the spectrum are occupied by unknown narrowband devices, and weave the remaining unoccupied spectrum bands into a single high-throughput wideband link. Second, FARA is a cooperative system that enables multi-channel wireless solutions like 802.11 to dynamically use all available channels for all devices in a performance-aware manner by using information from the physical layer and allocating to each link the frequency bands that show the highest performance for that link. SourceSync, the third system, enables wireless nodes in last-hop and wireless mesh networks to cooperatively transmit synchronously in order to exploit channel diversity and increase reliability. Finally, MegaMIMO enables wireless throughput to scale linearly with the number of transmitters by enabling multiple wireless transmitters to transmit simultaneously in the same frequency bands to multiple wireless receivers without interfering with each other. The systems in this dissertation demonstrate the practicality of cognitive and cooperative wireless systems to enable spectrum sharing. Further, as part of these systems, we design several novel primitives - adaptive spectrum sensing, time alignment, frequency synchronization, and distributed phase-coherent transmission, that can serve as fundamental building blocks for wireless cognition and cooperation. Finally, we have implemented all four systems described in this dissertation, and evaluated them in wireless testbeds, demonstrating large gains in practice.by Hariharan Shankar Rahul.Ph.D

    Dynamic auto configuration and self-management of next generation personal area networks

    Get PDF
    Estágio realizado no INESC-Porto e orientado pelo Eng.º Rui Lopes CamposTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore