736 research outputs found

    HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service

    Get PDF
    Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12) new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS) uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services

    Implications of WRC-15 on Spectrum and 5G

    Get PDF
    The last World Radiocommunication Conference, WRC-15, took place in Geneva in November 2015. This deliverable presents a review of the decisions taken during the conference regarding the agenda items for WRC-19, the frequency bands identified as strong candidates for the development of 5G systems and the importance for EU policies.JRC.E.2-Technology Innovation in Securit

    Spectrum-sharing method for co-existence between 5G OFDM-based system and fixed service

    Get PDF
    This study investigates the co-existence of fifth generation (5G) mobile communication systems and fixed service (FS) in the 28-GHz band through the utilization and modification of an existing spectrum-sharing method known as the advanced minimum coupling loss (A-MCL) model. The proposed model is based on the power spectral density (PSD) overlap between the 5G orthogonal frequency-division multiplexing (OFDM)-based system and the FS. Spectrum-sharing studies typically need 5G parameters, such as the spectrum emission mask (SEM); however, no such information is available for the new system to achieve accurate results. The proposed model is suitable for spectrum-sharing studies between 5G and other wireless systems without the need for the 5G SEM. Moreover, the existing model is implemented in a new application (i.e., 5G) in the 28-GHz band with different 5G bandwidths. Furthermore, the FS parameters and its frequency allocation are selected based on the Canadian standards to obtain preliminary results for the co-existence between the 5G system and the FS. Results show that co-existence is feasible when certain distances are applied, especially with higher 5G bandwidths (such as 0.5 and 1 GHz) when the 5G system acts as an interferer. In addition, the antenna position plays a major role in reducing the required separation distances between the victim receiver and the interfering transmitter. This model can be used for any future mobile generation such as the sixth generation (6G) mobile system if its PSD is known. This study is concurrent with the worldwide spectrum-sharing studies requested by the International Telecommunication Union for WRC-19

    Database-assisted spectrum sharing in satellite communications:A survey

    Get PDF
    This survey paper discusses the feasibility of sharing the spectrum between satellite telecommunication networks and terrestrial and other satellite networks on the basis of a comprehensive study carried out as part of the European Space Agency's (ESA) Advanced Research in Telecommunications Systems (ARTES) programme. The main area of investigation is the use of spectrum databases to enable a controlled sharing environment. Future satellite systems can largely benefit from the ability to access spectrum bands other than the dedicated licensed spectrum band. Potential spectrum sharing scenarios are classified as: a) secondary use of the satellite spectrum by terrestrial systems, b) satellite system as a secondary user of spectrum, c) extension of a terrestrial network by using the satellite network, and d) two satellite systems sharing the same spectrum. We define practical use cases for each scenario and identify suitable techniques. The proposed scenarios and use cases cover several frequency bands and satellite orbits. Out of all the scenarios reviewed, owing to the announcement of many different mega-constellation satellite networks, we focus on analysing the feasibility of spectrum sharing between geostationary orbit (GSO) and non-geostationary orbit (NGSO) satellite systems. The performance is primarily analysed on the basis of widely accepted recommendations of the Radiocommunications Sector of the International Telecommunications Union (ITU-R). Finally, future research directions are identified

    Coexistence for LTE-advanced and FSS services in the 3.5GHz band in Colombia

    Get PDF
    The 3.5GHz band is an optimal candidate for 5G networks due to its propagation characteristics and massive bandwidth. However, services like the Fixed Satellite Service (FSS) are using this band in several countries. Therefore, this paper presents a coexistence study of the Long Term Evolution - Advanced (LTE-A) and FSS services in the 3500-3700 MHz in Colombia. Simulations were done in realistic scenarios in the city of Bogota, Colombia. Preliminary results show that critical scenarios are the ones from the LTE eNodeB (eNB) and Users Equipment (UE) nodes to the FSS earth stations. The study includes the analysis of Guard Bands (GB) and arrival angles into the Protection Distances (PD). Results show that the PD is highly dependent on the angle of the interfering signal and the GB used. The PD for a cochannel interference in a suburban scenario is higher than 250km, in the worst-case scenario, and could be reduced down to 17.5 km if a 25 MHz GB is included and the angular difference of the interfering LTE-A signal is 42 square. Moreover, our results show that the PD needed for interference from UE are 100 times less compared to the eNB ones

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    The Case for Liberal Spectrum Licenses: A Technical and Economic Perspective

    Get PDF
    The traditional system of radio spectrum allocation has inefficiently restricted wireless services. Alternatively, liberal licenses ceding de facto spectrum ownership rights yield incentives for operators to maximize airwave value. These authorizations have been widely used for mobile services in the U.S. and internationally, leading to the development of highly productive services and waves of innovation in technology, applications and business models. Serious challenges to the efficacy of such a spectrum regime have arisen, however. Seeing the widespread adoption of such devices as cordless phones and wi-fi radios using bands set aside for unlicensed use, some scholars and policy makers posit that spectrum sharing technologies have become cheap and easy to deploy, mitigating airwave scarcity and, therefore, the utility of exclusive rights. This paper evaluates such claims technically and economically. We demonstrate that spectrum scarcity is alive and well. Costly conflicts over airwave use not only continue, but have intensified with scientific advances that dramatically improve the functionality of wireless devices and so increase demand for spectrum access. Exclusive ownership rights help direct spectrum inputs to where they deliver the highest social gains, making exclusive property rules relatively more socially valuable. Liberal licenses efficiently accommodate rival business models (including those commonly associated with unlicensed spectrum allocations) while mitigating the constraints levied on spectrum use by regulators imposing restrictions in traditional licenses or via use rules and technology standards in unlicensed spectrum allocations.

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed
    • …
    corecore