8,089 research outputs found

    Competition/Enhancement of Two Probe Order Parameters in the Unbalanced Holographic Superconductor

    Full text link
    We introduce and study a simple unbalanced holographic superconductor model with two scalar order parameters. The attention is focused on the possibility of coexisting orderings corresponding to the concomitant condensation of two scalar operators. Through a probe analysis we show that an attractive or repulsive direct interaction between the two bulk scalars leads respectively to competition and enhancement of the associated condensates. The system at hand is a toy model for studying generic multiple ordering in a strongly coupled context and some comments are given about its applicability to the ferromagnetic unconventional superconductors.Comment: 17 pages, 8 figure

    Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios

    Get PDF
    Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.info:eu-repo/semantics/publishedVersio

    Diversity, competition, extinction: the ecophysics of language change

    Get PDF
    As early indicated by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here we critically review some recent advances lying and outline their implications and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and Theoretical Ecology applied to study language dynamic

    Lattice Models of Ionic Systems

    Full text link
    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Huckel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for 3D lattices. As for continuum electrolytes, low-density results for sc, bcc and fcc lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.Comment: 25 pages, 3 figures, ReVTeX 4, Submitted to J. Chem. Phy

    Coexistence and asymptotic periodicity in a competitor–competitor–mutualist model

    Get PDF
    AbstractIn this paper, the competitor–competitor–mutualist three-species Lotka–Volterra model is discussed. Firstly, by Schauder fixed point theory, the coexistence state of the strongly coupled system is given. Applying the method of upper and lower solutions and its associated monotone iterations, the true solutions are constructed. Our results show that this system possesses at least one coexistence state if cross-diffusions and cross-reactions are weak. Secondly, the existence and asymptotic behavior of T-periodic solutions for the periodic reaction–diffusion system under homogeneous Dirichlet boundary conditions are investigated. Sufficient conditions which guarantee the existence of T-periodic solution are also obtained

    Fairy circle landscapes under the sea

    Full text link
    Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and "leopard skin" patterns consisting of bare seascapes patterns consisting of bare seascapes dotted with plant patches. The model predicts that these intermediate seascapes extending across kilometers emerge as a consequence of local demographic imbalances along with facilitative and competitive interactions among the plants with a characteristic spatial scale of 20 to 30 m, consistent with known drivers of seagrass performance. The model, which can be extended to clonal growth plants in other landscapes showing fairy rings, reveals that the different seascapes observed hold diagnostic power as to the proximity of seagrass meadows to extinction points that can be used to identify ecosystems at risks
    • …
    corecore