88 research outputs found

    A Survey on the Application of Evolutionary Algorithms for Mobile Multihop Ad Hoc Network Optimization Problems

    Get PDF
    Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal solutions in a reasonable time. They have been applied to many optimization problems in a high number of scientific areas. In this survey paper, we focus on the application of evolutionary algorithms to solve optimization problems related to a type of complex network likemobilemultihop ad hoc networks. Since its origin, mobile multihop ad hoc network has evolved causing new types of multihop networks to appear such as vehicular ad hoc networks and delay tolerant networks, leading to the solution of new issues and optimization problems. In this survey, we review the main work presented for each type of mobile multihop ad hoc network and we also present some innovative ideas and open challenges to guide further research in this topic

    Optimizing groups of colluding strong attackers in mobile urban communication networks with evolutionary algorithms

    Get PDF
    In novel forms of the Social Internet of Things, any mobile user within communication range may help routing messages for another user in the network. The resulting message delivery rate depends both on the users’ mobility patterns and the message load in the network. This new type of configuration, however, poses new challenges to security, amongst them, assessing the effect that a group of colluding malicious participants can have on the global message delivery rate in such a network is far from trivial. In this work, after modeling such a question as an optimization problem, we are able to find quite interesting results by coupling a network simulator with an evolutionary algorithm. The chosen algorithm is specifically designed to solve problems whose solutions can be decomposed into parts sharing the same structure. We demonstrate the effectiveness of the proposed approach on two medium-sized Delay-Tolerant Networks, realistically simulated in the urban contexts of two cities with very different route topology: Venice and San Francisco. In all experiments, our methodology produces attack patterns that greatly lower network performance with respect to previous studies on the subject, as the evolutionary core is able to exploit the specific weaknesses of each target configuration.<br/

    09201 Abstracts Collection -- Self-Healing and Self-Adaptive Systems

    Get PDF
    From May 10th 2009 to May 15th 2009 the Dagstuhl Seminar 09201 ``Self-Healing and Self-Adaptive Systems\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. Links to extended abstracts or full papers are provided, if available. A description of the seminar topics, goals and results in general can be found in a separate document ``Executive Summary\u27\u27

    Metaheuristic Optimization Frameworks: a Survey and Benchmarking

    Get PDF
    This paper performs an unprecedented comparative study of Metaheuristic optimization frameworks. As criteria for comparison a set of 271 features grouped in 30 characteristics and 6 areas has been selected. These features include the different metaheuristic techniques covered, mechanisms for solution encoding, constraint handling, neighborhood specification, hybridization, parallel and distributed computation, software engineering best practices, documentation and user interface, etc. A metric has been defined for each feature so that the scores obtained by a framework are averaged within each group of features, leading to a final average score for each framework. Out of 33 frameworks ten have been selected from the literature using well-defined filtering criteria, and the results of the comparison are analyzed with the aim of identifying improvement areas and gaps in specific frameworks and the whole set. Generally speaking, a significant lack of support has been found for hyper-heuristics, and parallel and distributed computing capabilities. It is also desirable to have a wider implementation of some Software Engineering best practices. Finally, a wider support for some metaheuristics and hybridization capabilities is needed

    Balancing the trade-off between cost and reliability for wireless sensor networks: a multi-objective optimized deployment method

    Full text link
    The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on https://github.com/iNet-WZU/CMOMPA.Comment: 25 page

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Optimization and control of virus-host systems

    Get PDF
    Optimization and control are powerful tools to design a system that works as effectively as possible. In this thesis, we focus on applications of model-based optimization and control in complex virus-host systems at multiple scales. Viruses that infect bacteria, i.e., bacteriophage or ‘phage’, are increasingly considered as treatment options for the control and clearance of bacterial infections, particularly as compassionate use therapy for multi-drug resistant infections. Here, we evaluate principles underlying why careful application of multiple phage (i.e., a ‘cocktail’) might lead to therapeutic success in contrast to the failure of single-strain phage therapy to control an infection. We combine dynamical modeling of phage, bacteria, and host immune cell populations with control-theoretic principles (via optimal control theory) to devise phage cocktails and delivery schedules to control the bacterial populations. However, a risk in using cocktails of different phage is that bacteria could simultaneously develop resistance to all injected phage (i.e., selecting for multi-phage resistant). The next step is to understand how to pre-select phage that have adapted via co-evolution with bacterial strains and then to efficiently use these ‘future’ phage to clear the infection early on. In doing so, we develop the evolutionarily robust phage therapy in immunodeficient hosts given the infection networks that was identified in co-evolutionary training. Optimization and control not only can be applied to bacteria-phage-immune systems (i.e., at the microbial level) to help design phage therapy, but also can be applied to epidemiological systems (i.e., at the large-scale population level) to guide the development and deployment of efficient interventions. Lockdowns and stay-at-home orders have reduced the transmission of SARS-CoV-2 but have come with significant social and economic costs. Here, we describe a control theory framework combining population-scale viral and serological testing as part of an individualized approach to control COVID-19 spread. The aim is to develop policies for modulating individualize contact rates depending on both personalized disease status and the status of the epidemic at the population scale. Altogether in this thesis, we apply control strategies to alleviate the burden or spread of disease at multiple scales.Ph.D

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    • …
    corecore