54,586 research outputs found

    Neural network controller against environment: A coevolutive approach to generalize robot navigation behavior

    Get PDF
    In this paper, a new coevolutive method, called Uniform Coevolution, is introduced to learn weights of a neural network controller in autonomous robots. An evolutionary strategy is used to learn high-performance reactive behavior for navigation and collisions avoidance. The introduction of coevolutive over evolutionary strategies allows evolving the environment, to learn a general behavior able to solve the problem in different environments. Using a traditional evolutionary strategy method, without coevolution, the learning process obtains a specialized behavior. All the behaviors obtained, with/without coevolution have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on a mini-robot Khepera has been used to learn each behavior. The results show that Uniform Coevolution obtains better generalized solutions to examples-based problems.Publicad

    A general learning co-evolution method to generalize autonomous robot navigation behavior

    Get PDF
    Congress on Evolutionary Computation. La Jolla, CA, 16-19 July 2000.A new coevolutive method, called Uniform Coevolution, is introduced, to learn weights for a neural network controller in autonomous robots. An evolutionary strategy is used to learn high-performance reactive behavior for navigation and collision avoidance. The coevolutive method allows the evolution of the environment, to learn a general behavior able to solve the problem in different environments. Using a traditional evolutionary strategy method without coevolution, the learning process obtains a specialized behavior. All the behaviors obtained, with or without coevolution have been tested in a set of environments and the capability for generalization has been shown for each learned behavior. A simulator based on the mini-robot Khepera has been used to learn each behavior. The results show that Uniform Coevolution obtains better generalized solutions to example-based problems

    Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    Get PDF
    The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change

    The dynamics of national innovation systems: a panel cointegration analysis of the coevolution between innovative capability and absorptive capacity

    Get PDF
    This paper puts forward the idea that the dynamics of national innovation systems is driven by the coevolution of two main dimensions: innovative capability and absorptive capacity. The empirical analysis employs a broad set of indicators measuring national innovative capabilities and absorptive capacity for a panel of 98 countries in the period 1980-2008, and makes use of panel cointegration analysis to investigate long-run relationships and coevolution patterns among these variables. The results indicate that the dynamics of national systems of innovation is driven by the coevolution of three innovative capability variables (technological output, scientific output, innovative input), on the one hand, and three absorptive capacity factors (income per capita, infrastructures and international trade), on the other.national systems of innovation; innovative capability; absorptive capacity; economic growth and development; coevolution; panel cointegration analysis

    Coevolution of Glauber-like Ising dynamics and topology

    Full text link
    We study the coevolution of a generalized Glauber dynamics for Ising spins, with tunable threshold, and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component, organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.Comment: 5 pages, 3 figures. Final version published in Physical Review

    Coevolutive adaptation of fitness landscape for solving the testing problem

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN, 8-11 October 2000A general framework, called Uniform Coevolution, is introduced to overcome the testing problem in evolutionary computation methods. This framework is based on competitive evolution ideas where the solution and example sets are evolving by means of a competition to generate difficult test beds for the solutions in a gradual way. The method has been tested with two different problems: the robot navigation problem and the density parity problem in cellular automata. In both test cases using evolutive methods, the examples used in the learning process biased the solutions found. The main characteristics of the Uniform Coevolution method are that it smoothes the fitness landscape and, that it obtains “ideal learner examples”. Results using uniform coevolution show a high value of generality, compared with non co-evolutive approaches

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Uniform coevolution for solving the density classification problem in cellular automata

    Get PDF
    Genetic and Evolutionary Computation Conference (GECCO 2000). Las Vegas, Nevada (USA), July 8-12 2000.Uniform Coevolution is based on competitive evolution ideas where the solution and example sets are evolving by means of a competition to generate difficult test beds for the solutions in a gradual way. The method has been tested with the density parity problem in cellular automata, where the selected examples can biased the solutions founded. The results show a high value of generality using Uniform coevolution, compared with no Co-evolutive approaches.Publicad
    • 

    corecore